[1] YE X, LIU Y, GUO Q, et al. 1D versus 2D cocrystals growth via microspacing in-air sublimation[J]. Nature Communications, 2019, 10: 761. [2] HE D W, ZHANG Y H, WU Q S, et al. Two-dimensional quasi-freestanding molecular crystals for high-performance organic field-effect transistors[J]. Nature Communications, 2014, 5: 5162. [3] YAO Y F, ZHANG L, LEYDECKER T, et al. Direct photolithography on molecular crystals for high performance organic optoelectronic devices[J]. Journal of the American Chemical Society, 2018, 140(22): 6984-6990. [4] KIM J H, PARK S K, KIM J H, et al. Self-assembled organic single crystalline nanosheet for solution processed high-performance n-channel field-effect transistors[J]. Advanced Materials, 2016, 28(28): 6011-6015. [5] 吴君辉,袁 艺,高明圆,等.溶剂蒸汽退火法制备有机小分子半导体单晶[J].化学学报,2015,73(1):23-28. WU J H, YUAN Y, GAO M Y, et al. Preparation of single crystals of small molecule organic semiconductor via solvent vapor annealing[J]. Acta Chimica Sinica, 2015, 73(1): 23-28(in Chinese). [6] CAO M, ZHANG C, CAI Z, et al. Enhanced photoelectrical response of thermodynamically epitaxial organic crystals at the two-dimensional limit[J]. Nature Communications, 2019, 10: 756. [7] ZHAO H J, ZHAO Y B, SONG Y X, et al. Strong optical response and light emission from a monolayer molecular crystal[J]. Nature Communications, 2019, 10(1): 5589. [8] SHI Y J, JIANG L, LIU J, et al. Bottom-up growth of n-type monolayer molecular crystals on polymeric substrate for optoelectronic device applications[J]. Nature Communications, 2018, 9: 2933. [9] HU Y Y, PECUNIA V, JIANG L, et al. Scanning kelvin probe microscopy investigation of the role of minority carriers on the switching characteristics of organic field-effect transistors[J]. Advanced Materials, 2016, 28(23): 4713-4719. [10] PODZOROV V. Organic single crystals: addressing the fundamentals of organic electronics[J]. MRS Bulletin, 2013, 38(1): 15-24. [11] WANG Q J, QIAN J, LI Y, et al. 2D molecular semiconductors: 2D single-crystalline molecular semiconductors with precise layer definition achieved by floating-coffee-ring-driven assembly[J]. Advanced Functional Materials, 2016, 26(19): 3181. [12] GIRI G, VERPLOEGEN E, MANNSFELD S C B, et al. Tuning charge transport in solution-sheared organic semiconductors using lattice strain[J]. Nature, 2011, 480(7378): 504-508. [13] XU C H, HE P, LIU J, et al. A general method for growing two-dimensional crystals of organic semiconductors by “solution epitaxy”[J]. Angewandte Chemie, 2016, 55(33): 9519-9523. [14] ZHANG T H, LIU X Y. Nucleation: what happens at the initial stage? [J]. Angewandte Chemie, 2009, 48(7): 1308-1312. [15] VEKILOV P G. Nucleation[J]. Crystal Growth & Design, 2010, 10(12): 5007-5019. [16] PRESTIPINO S, LAIO A, TOSATTI E. Systematic improvement of classical nucleation theory[J]. Physical Review Letters, 2012, 108(22): 225701. [17] KOß P, STATT A, VIRNAU P, et al. The phase coexistence method to obtain surface free energies and nucleation barriers: a brief review[J]. Molecular Physics, 2018, 116(21/22): 2977-2986. [18] VAN LEEUWEN C. On the driving force for crystallization: the growth affinity[J]. Journal of Crystal Growth, 1979, 46(1): 91-95. [19] KIM S J, BANG I C, BUONGIORNO J, et al. Effects of nanoparticle deposition on surface wettability influencing boiling heat transfer in nanofluids[J]. Applied Physics Letters, 2006, 89(15): 153107. [20] KOß P, STATT A, VIRNAU P, et al. Free-energy barriers for crystal nucleation from fluid phases[J]. Physical Review E, 2017, 96(4-1): 042609. [21] SOEDA J, UEMURA T, MIZUNO Y, et al. High electron mobility in air for N, N′-1H, 1H-perfluorobutyldicyanoperylene carboxydi-imide solution-crystallized thin-film transistors on hydrophobic surfaces[J]. Advanced Materials, 2011, 23(32): 3681-3685. [22] HLAWACEK G, PUSCHNIG P, FRANK P, et al. Characterization of step-edge barriers in organic thin-film growth[J]. Science, 2008, 321(5885): 108-111. [23] WINTER D, VIRNAU P, BINDER K. Monte Carlo test of the classical theory for heterogeneous nucleation barriers[J]. Physical Review Letters, 2009, 103(22): 225703. [24] LIU X Y, MAIWA K, TSUKAMOTO K. Heterogeneous two-dimensional nucleation and growth kinetics[J]. The Journal of Chemical Physics, 1997, 106(5): 1870-1879. [25] ISHINO C, OKUMURA K. Nucleation scenarios for wetting transition on textured surfaces: the effect of contact angle hysteresis[J]. Europhysics Letters, 2006, 76(3): 464-470. [26] HIENOLA A I, WINKLER P M, WAGNER P E, et al. Estimation of line tension and contact angle from heterogeneous nucleation experimental data[J]. The Journal of Chemical Physics, 2007, 126(9): 094705. |