[1] RAJA M, MUTHUKUMARASAMY N, VELAUTHAPILLAI D, et al. Enhanced photovoltaic performance of quantum dot-sensitized solar cell fabricated using Al-doped ZnO nanorod electrode[J]. Superlattices and Microstructures, 2015, 80: 53-62. [2] 孟 甲,余春燕,贾 伟,等.洋葱皮敏化ZnO太阳能电池的光电性能研究[J].人工晶体学报,2014,43(8):2028-2034. MENG J, YU C Y, JIA W, et al. Study on photoelectric properties of ZnO solar cell sensitized by onion skin[J]. Journal of Synthetic Crystals, 2014, 43(8): 2028-2034(in Chinese). [3] TSUKAZAKI A, OHTOMO A, ONUMA T, et al. Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO[J]. Nature Materials, 2005, 4(1): 42-46. [4] RECH B, KLUTH O, REPMANN T, et al. New materials and deposition techniques for highly efficient silicon thin film solar cells[J]. Solar Energy Materials and Solar Cells, 2002, 74(1/2/3/4): 439-447. [5] PUST S E, BECKER J P, WORBS J, et al. Electrochemical etching of zinc oxide for silicon thin film solar cell applications[J]. Journal of the Electrochemical Society, 2011, 158(7): D413. [6] LIN Y C, YEN W T, SHEN C H, et al. Surface texturing of Ga-doped ZnO thin films by pulsed direct-current magnetron sputtering for photovoltaic applications[J]. Journal of Electronic Materials, 2012, 41(3): 442-450. [7] LEE J M, YUN S J, KIM J K, et al. Texturing of Ga-doped ZnO transparent electrode for a-Si∶H thin film solar cells[J]. Electrochemical and Solid-State Letters, 2011, 14(11): B124. [8] FAŸ S, STEINHAUSER J, NICOLAY S, et al. Polycrystalline ZnO∶B grown by LPCVD as TCO for thin film silicon solar cells[J]. Thin Solid Films, 2010, 518(11): 2961-2966. [9] FAŸ S, STEINHAUSER J, OLIVEIRA N, et al. Opto-electronic properties of rough LP-CVD ZnO∶B for use as TCO in thin-film silicon solar cells[J]. Thin Solid Films, 2007, 515(24): 8558-8561. [10] SAXENA N, MANZHI P, CHOUDHARY R J, et al. Performance optimization of transparent and conductive Zn1-xAlxO thin films for opto-electronic devices: an experimental & first-principles investigation[J]. Vacuum, 2020, 177: 109369. [11] 彭丽萍,孟桂菊,徐 凌.Al掺杂ZnO光学性能的第一性原理研究[J].高等函授学报(自然科学版),2007,20(4):39-42+44. PENG L P, MENG G J, XU L. First principles study on optical properties of Al doped ZnO[J]. Journal of Higher Correspondence Education (Natural Sciences), 2007, 20(4): 39-42+44(in Chinese). [12] 王延峰,张晓丹,黄 茜,等.B掺杂ZnO透明导电薄膜的实验及理论研究[J].物理学报,2013,62(24):316-321. WANG Y F, ZHANG X D, HUANG Q, et al. Experimental and theoretical investigation of transparent and conductive B doped ZnO film[J]. Acta Physica Sinica, 2013, 62(24): 316-321(in Chinese). [13] 刘建军,陈 三.Ga掺杂ZnO电子结构和吸收光谱的第一性原理研究[J].原子与分子物理学报,2010,27(3):575-580. LIU J J, CHEN S. First-principles study on the electronic structures and absorption spectrum of Ga-doped ZnO[J]. Journal of Atomic and Molecular Physics, 2010, 27(3): 575-580(in Chinese). [14] 王延峰,孟旭东,郑 伟,等.V掺杂ZnO透明导电薄膜研究[J].物理学报,2016,65(8):344-350. WANG Y F, MENG X D, ZHENG W, et al. Investigation of V doped ZnO transparent conductive oxide films[J]. Acta Physica Sinica, 2016, 65(8): 344-350(in Chinese). [15] 贾晓芳,侯清玉,赵春旺.采用第一性原理研究钼掺杂浓度对ZnO物性的影响[J].物理学报,2017,66(6):067401. JIA X F, HOU Q Y, ZHAO C W. Effect of Mo doping concentration on the physical properties of ZnO studied by first principles[J]. Acta Physica Sinica, 2017, 66(6): 067401(in Chinese). [16] 方文玉,卫荣华,王晓雯,等.W掺杂ZnO电子结构与光学性质第一性原理计算[J].原子与分子物理学报,2019,36(4):682-687. FANG W Y, WEI R H, WANG X W, et al. First-principles calculations on the electronic structures and optical properties of ZnO doped with W[J]. Journal of Atomic and Molecular Physics, 2019, 36(4): 682-687(in Chinese). [17] SUZUKI A Y, NOSE K, UENO A, et al. High transparency and electrical conductivity of SnO2∶Nb thin films formed through (001)-oriented SnO∶Nb on glass substrate[J]. Applied Physics Express, 2012, 5(1): 011103. [18] 张敏明.透明导电氧化物半导体材料的量子化学计算与设计[D].北京:北京化工大学,2013. ZHANG M M. Quantum chemistry design and calculation of transparent conductive oxide semiconductor materials[D]. Beijing: Beijing University of Chemical Technology, 2013(in Chinese). [19] ERHART P, ALBE K. First-principles study of migration mechanisms and diffusion of oxygen in zinc oxide[J]. Physical Review B, 2006, 73(11): 115207. [20] PAN F C, LIN X L, LI J, et al. The electronic structures and ferromagnetism of Cu-doped ZnO: the first-principle calculation study[J]. Journal of Superconductivity and Novel Magnetism, 2018, 31(7): 2103-2110. [21] ZHOU C, LIU X, LI K, et al. Electronic and optical properties of Zn(Cu, V)O studied by first principles[J]. Optik, 2015, 126(23): 4731-4734. [22] 伞海生,李 斌,冯博学,等.由缺陷引起的Burstein-Moss和带隙收缩效应对CdIn2O4透明导电薄膜光带隙的影响[J].物理学报,2005,54(2):842-847. SAN H S, LI B, FENG B X, et al. Effect on optical band-gap of transparent and conductive CdIn2O4 thin film due to defects-induced burstein-moss and band-gap narrowing characteristics[J]. Acta Physica Sinica, 2005, 54(2): 842-847(in Chinese). [23] 郭连权,武鹤楠,刘嘉慧,等.ZnO能带及态密度的密度泛函理论研究[J].人工晶体学报,2009,38(2):440-444. GUO L Q, WU H N, LIU J H, et al. Density functional theory study on energy band and density of states of ZnO[J]. Journal of Synthetic Crystals, 2009, 38(2): 440-444(in Chinese). [24] DJURIC Z, LIVADA B, JOVIC V, et al. Quantum efficiency and responsivity of InSb photodiodes utilizing the Moss-Burstein effect[J]. Infrared Physics, 1989, 29(1): 1-7. [25] 周爱萍,刘汉法,袁玉珍.氩气压强对直流磁控溅射法制备ZnO∶Nb透明导电薄膜性质的影响[J].真空科学与技术学报,2012,32(11):974-977. ZHOU A P, LIU H F, YUAN Y Z. Growth and characterization of magnetron sputtered ZnO∶Nb films[J]. Chinese Journal of Vacuum Science and Technology, 2012, 32(11): 974-977(in Chinese). |