[1] MENG R S, SUN X, JIANG J K, et al. Novel GaN-based nanocomposites: effective band structure and optical property tuning by tensile strain or external field[J]. Applied Surface Science, 2018, 427: 554-562. [2] AZIZA Z B, PIERUCCI D, HENCK H, et al. Tunable quasiparticle band gap in few layer GaSe/graphene van der waals heterostructures[EB/OL]. 2017: arXiv: 1707.01288[cond-mat.mtrl-sci]. https://arxiv.org/abs/1707.01288. [3] CONG C X, SHANG J Z, WANG Y L, et al. Optical properties of 2D semiconductor WS2[J]. Advanced Optical Materials, 2018, 6(1): 1700767. [4] ROMÁN R, COSTA F, ZOBELLI A, et al. Band gap measurements of monolayer h-BN and insights into carbon-related point defects[J]. 2D Materials, 2021, 8(4): 44001. [5] WANG B, WANG G Z, YUAN H K, et al. Strain-tunable electronic and optical properties in two dimensional GaSe/g-C3N4 van der Waals heterojunction as photocatalyst for water splitting[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 118: 113896. [6] CHEN H F, TAN C L, ZHANG K, et al. Enhanced photocatalytic performance of ZnO monolayer for water splitting via biaxial strain and external electric field[J]. Applied Surface Science, 2019, 481: 1064-1071. [7] 黄炳铨,周铁戈,吴道雄,等.空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析[J].物理学报,2019,68(24):246301. HUANG B Q, ZHOU T G, WU D X, et al. Properties of vacancies and N-doping in monolayer g-ZnO: first-principles calculation and molecular orbital theory analysis[J]. Acta Physica Sinica, 2019, 68(24): 246301(in Chinese). [8] CHEN S F, LIU F N, XU M Z, et al. First-principles calculations and experimental investigation on SnO2@ZnO heterojunction photocatalyst with enhanced photocatalytic performance[J]. Journal of Colloid and Interface Science, 2019, 553: 613-621. [9] GU S, ZHAO X L, ZHOU X Y, et al. Nickel-doped porous ZnO nanosheets functionalized with CuInS2 nanoparticles: an efficient photocatalyst for chromium (Ⅵ) reduction[J]. ChemPlusChem, 2020, 85(1): 142-150. [10] WAKHARE S Y, DESHPANDE M D. The electronic and optical properties of monovalent atom-doped ZnO monolayers: the density functional theory[J]. Bulletin of Materials Science, 2019, 42(5): 1-8. [11] SUN D, TAN C L, TIAN X H, et al. Comparative study on ZnO monolayer doped with Al, Ga and in atoms as transparent electrodes[J]. Materials, 2017, 10(7): 703. [12] WAKHARE S Y, DESHPANDE M D. Structural, electronic and optical properties of metalloid element (B, Si, Ge, As, Sb, and Te) doped g-ZnO monolayer: a DFT study[J]. Journal of Molecular Graphics and Modelling, 2020, 101: 107753. [13] WU Q, WANG P, LIU Y, et al. First-principles calculations of the electronic structure and optical properties of yttrium-doped ZnO monolayer with vacancy[J]. Materials, 2020, 13(3): 724. [14] YAO H, YAO Q, WANG H, et al. Optoelectronic properties of MoS2/g-ZnO van der Waals heterostructure investigated by first-principles calculations[J]. Journal of Electronic Materials, 2020, 49(8): 4557-4562. [15] ZHANG R L, XIE J W, WANG C, et al. Macroporous ZnO/ZnS/CdS composite spheres as efficient and stable photocatalysts for solar-driven hydrogen generation[J]. Journal of Materials Science, 2017, 52(19): 11124-11134. [16] JANG E, KIM D W, HONG S H, et al. Visible light-driven g-C3N4@ZnO heterojunction photocatalyst synthesized via atomic layer deposition with a specially designed rotary reactor[J]. Applied Surface Science, 2019, 487: 206-210. [17] GUAN Z Y, LIAN C S, HU S L, et al. Tunable structural, electronic, and optical properties of layered two-dimensional C2N and MoS2 van der Waals heterostructure as photovoltaic material[J]. The Journal of Physical Chemistry, C Nanomaterials and Interfaces, 2017, 121(6): 3654-3660. [18] 苏进楠,陈俊杰,潘 敏,等.应变和电场调控HfSe2/PtSe2异质结的电子结构[J].中国科学:物理学 力学 天文学,2021,51(8):96-103. SU J N, CHEN J J, PAN M, et al. Tuning the electronic properties of HfSe2/PtSe2 heterostructure using electric field and biaxial strain[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2021, 51(8): 96-103(in Chinese). [19] 邢海英,郑智健,张子涵,等.应力调控BlueP/XTe2(X=Mo,W)范德瓦耳斯异质结电子结构及光学性质理论研究[J].物理学报,2021,70(6):292-303. XING H Y, ZHENG Z J, ZHANG Z H, et al. Tunable electronic structure and optical properties of BlueP/XTe2(X=Mo, W) van der Waals heterostructures by strain[J]. Acta Physica Sinica, 2021, 70(6): 292-303(in Chinese). [20] CHEN X F, SHENG H H, WANG J L, et al. Electronic and optical properties tuned by strain and external electric field of g-ZnO/2H-TiS2 van der Waals heterostructures[J]. Vacuum, 2020, 174: 109232. [21] LIU S, LIAO Q L, LU S N, et al. Strain modulation in graphene/ZnO nanorod film Schottky junction for enhanced photosensing performance[J]. Advanced Functional Materials, 2016, 26(9): 1347-1353. [22] WANG G Z, YUAN H K, CHANG J L, et al. ZnO/MoX2 (X=S, Se) composites used for visible light photocatalysis[J]. RSC Advances, 2018, 8(20): 10828-10835. [23] ZIAT Y, HAMMI M, ZARHRI Z, et al. Investigation on Mo-doped SnO2 for potential use in magnetoelectronic applications: the DFT framework[J]. International Journal of Modern Physics B, 2020, 34(5): 2050020. [24] CLARK S J, SEGALL M D, PICKARD C J, et al. First principles methods using CASTEP[J]. Zeitschrift Für Kristallographie-Crystalline Materials, 2005, 220(5/6): 567-570. [25] SEGALL M D, LINDAN P J D, PROBERT M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code[J]. Journal of Physics: Condensed Matter, 2002, 14(11): 2717-2744. [26] TKATCHENKO A, SCHEFFLER M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data[J]. Physical Review Letters, 2009, 102(7): 073005. [27] SHARMA D K, KUMAR S, AULUCK S. Electronic structure, defect properties, and hydrogen storage capacity of 2H-WS2: a first-principles study[J]. International Journal of Hydrogen Energy, 2018, 43(52): 23126-23134. [28] LIN C M, LEUNG T C, WADEKAR P, et al. Tunable band gap engineering in type-Ⅱ g-ZnO/ZnX (X=S, Se, Te) hetero-bilayers[J]. Vacuum, 2021, 192: 110386. [29] TUSCHE C, MEYERHEIM H L, KIRSCHNER J. Observation of depolarized ZnO(0001) monolayers: formation of unreconstructed planar sheets[J]. Physical Review Letters, 2007, 99(2): 026102. [30] QI S Y, LIU X T, MA N L, et al. Construction and photocatalytic properties of WS2/BiOCl heterojunction[J]. Journal of Nanoparticle Research, 2020, 22(12): 1-14. [31] YANG Y, FENG Z Y, ZHANG J M. Structural, electronic, magnetic, and optical properties of monolayer WS2 doped with Co-X6 (X=S, N, O, and F)[J]. Thin Solid Films, 2019, 675: 86-95. [32] CHOUDHARY K, TAVAZZA F. Convergence and machine learning predictions of Monkhorst-Pack k-points and plane-wave cut-off in high-throughput DFT calculations[J]. Computational Materials Science, 2019, 161: 300-308. [33] 郭丽娟,胡吉松,马新国,等.二硫化钨/石墨烯异质结的界面相互作用及其肖特基调控的理论研究[J].物理学报,2019,68(9):221-229. GUO L J, HU J S, MA X G, et al. Interfacial interaction and Schottky contact of two-dimensional WS2/graphene heterostructure[J]. Acta Physica Sinica, 2019, 68(9): 221-229(in Chinese). [34] 马浩浩,张显斌,魏旭艳,等.非金属元素掺杂二硒化钨/石墨烯异质结对其肖特基调控的理论研究[J].物理学报,2020,69(11):297-307. MA H H, ZHANG X B, WEI X Y, et al. Theoretical study on Schottky regulation of WSe2/graphene heterostructure doped with nonmetallic elements[J]. Acta Physica Sinica, 2020, 69(11): 297-307(in Chinese). [35] JIN Q, DAI X Y, SONG J J, et al. High photocatalytic performance of g-C3N4/WS2 heterojunction from first principles[J]. Chemical Physics, 2021, 545: 111141. [36] 郝国强,张 瑞,张文静,等.非对称氧掺杂对石墨烯/二硒化钼异质结肖特基势垒的调控[J].物理学报,2022,71(1):240-248. HAO G Q, ZHANG R, ZHANG W J, et al. Regulation and control of Schottky barrier in graphene/MoSe2 heteojuinction by asymmetric oxygen doping[J]. Acta Physica Sinica, 2022, 71(1): 240-248(in Chinese). [37] BJÖRKMAN T, GULANS A, KRASHENINNIKOV A V, et al. Van der Waals bonding in layered compounds from advanced density-functional first-principles calculations[J]. Physical Review Letters, 2012, 108(23): 235502. [38] HU J S, JI G P, MA X G, et al. Probing interfacial electronic properties of graphene/CH3NH3PbI3 heterojunctions: a theoretical study[J]. Applied Surface Science, 2018, 440: 35-41. [39] XU P T, TANG Q, ZHOU Z. Structural and electronic properties of graphene-ZnO interfaces: dispersion-corrected density functional theory investigations[J]. Nanotechnology, 2013, 24(30): 305401. [40] DING Y, WANG Y L, NI J, et al. First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers[J]. Physica B: Condensed Matter, 2011, 406(11): 2254-2260. [41] MOGULKOC A, MOGULKOC Y, KECIK D, et al. The effect of strain and functionalization on the optical properties of borophene[J]. Physical Chemistry Chemical Physics, 2018, 20(32): 21043-21050. [42] 李发云,杨志雄,程 雪,等.单层缺陷碲烯电子结构与光学性质的第一性原理研究[J].物理学报,2021,70(16):166301. LI F Y, YANG Z X, CHENG X, et al. First-principles study of electronic structure and optical properties of monolayer defective tellurene[J]. Acta Physica Sinica, 2021, 70(16): 166301(in Chinese). [43] ZHANG J F, ZHOU P, LIU J J, et al. New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2[J]. Physical Chemistry Chemical Physics, 2014, 16(38): 20382-20386. |