[1] 唐荣江,潘朝远,郑伟光,等.开口圆环类声子晶体传播禁带特性研究[J].人工晶体学报,2021,50(3):428-434. TANG R J, PAN C Y, ZHENG W G, et al. Propagation band gap characteristics of open ring-like phononic crystal[J]. Journal of Synthetic Crystals, 2021, 50(3): 428-434(in Chinese). [2] DAUNIZEAU T, GUEORGUIEV D, HALIYO S, et al. Phononic crystals applied to localised surface haptics[J]. IEEE Transactions on Haptics, 2021, 14(3): 668-674. [3] 高南沙,侯 宏.三维局域共振型声子晶体低频带隙特性研究[J].材料导报,2018,32(2):322-326. GAO N S, HOU H. Low frequency bandgap characteristics of three-dimensional local resonance phononic crystal[J]. Materials Review, 2018, 32(2): 322-326(in Chinese). [4] PARK S H, SEO S H. Low-frequency noise reduction in an enclosure by using a Helmholtz resonator array[J]. Transactions of the Korean Society for Noise and Vibration Engineering, 2012, 22(8): 756-762. [5] 陈应航,陈 键,徐 驰,等.隔声超构材料的研究进展[J].人工晶体学报,2021,50(7):1222-1233. CHEN Y H, CHEN J, XU C, et al. Research progress of sound insulation metamaterials[J]. Journal of Synthetic Crystals, 2021, 50(7): 1222-1233(in Chinese). [6] ASH B J, WORSFOLD S R, VUKUSIC P, et al. A highly attenuating and frequency tailorable annular hole phononic crystal for surface acoustic waves[J]. Nature Communications, 2017, 8: 174. [7] YANG X N, ZHONG J H, XIANG J W. Designing a phononic crystal with a large defect to enhance elastic wave energy localization and harvesting[J]. Japanese Journal of Applied Physics, 2022, 61(1): 017002. [8] KUSHWAHA M S, HALEVI P, DOBRZYNSKI L, et al. Acoustic band structure of periodic elastic composites[J]. Physical Review Letters, 1993, 71(13): 2022-2025. [9] MARTÍNEZ-SALA R, SANCHO J, SÁNCHEZ J V, et al. Sound attenuation by sculpture[J]. Nature, 1995, 378(6554): 241. [10] SHENG P, ZHANG X X, LIU Z, et al. Locally resonant sonic materials[J]. Physica B: Condensed Matter, 2003, 338(1/2/3/4): 201-205. [11] FANG N, XI D J, XU J Y, et al. Ultrasonic metamaterials with negative modulus[J]. Nature Materials, 2006, 5(6): 452-456. [12] CHENG Y, XU J Y, LIU X J. One-dimensional structured ultrasonic metamaterials with simultaneously negative dynamic density and modulus[J]. Physical Review B, 2008, 77(4): 045134. [13] XU C, GUO H, CHEN Y H, et al. Study on broadband low-frequency sound insulation of multi-channel resonator acoustic metamaterials[J]. AIP Advances, 2021, 11(4): 045321. [14] HAN D H, ZHAO J B, ZHANG G J, et al. Study on low-frequency band gap characteristics of a new Helmholtz type phononic crystal[J]. Symmetry, 2021, 13(8): 1379. [15] LUO Y Q, LOU J J, ZHANG Y B. An acoustic absorbing metamaterial with multi-Helmholtz resonators at low-frequency underwater[J]. Modern Physics Letters B, 2021, 35(23): 2150397. [16] GUAN D, WU J H, JING L, et al. Application of a Helmholtz structure for low frequency noise reduction[J]. Noise Control Engineering Journal, 2015, 63(1): 20-35. [17] 陈 鑫,姚 宏,赵静波,等.双局域共振Helmholtz声子晶体带隙研究[J].人工晶体学报,2019,48(1):13-17. CHEN X, YAO H, ZHAO J B, et al. Study on the bandgap of double local resonance Helmholtz phononic crystals[J]. Journal of Synthetic Crystals, 2019, 48(1): 13-17(in Chinese). [18] 刘 敏,侯志林,傅秀军.二维正方排列圆柱状亥姆赫兹共振腔阵列局域共振声带隙的研究[J].物理学报,2012,61(10):104302. LIU M, HOU Z L, FU X J. Local resonant acoustic band gaps in two-dimensional square-arranged Helmholtz resonators array[J]. Acta Physica Sinica, 2012, 61(10): 104302(in Chinese). [19] JIANG J L, YAO H, DU J, et al. Multi-cavity locally resonant structure with the low frequency and broad band-gaps[J]. AIP Advances, 2016, 6(11): 115024. [20] CAI C Z, MAK C M, SHI X F. An extended neck versus a spiral neck of the Helmholtz resonator[J]. Applied Acoustics, 2017, 115: 74-80. [21] 张宪旭,刘怡然,李丽君.基于Helmholtz共振腔阵列的声学超材料研究[J].工程设计学报,2020,27(4):441-447. ZHANG X X, LIU Y R, LI L J. Research on acoustic metamaterial based on Helmholtz resonant cavity array[J]. Chinese Journal of Engineering Design, 2020, 27(4): 441-447(in Chinese). |