[1] FRANKEN P A, HILL A E, PETERS C W, et al. Generation of optical harmonics[J]. Physical Review Letters, 1961, 7(4): 118-119. [2] RYTZ D, GROSS A, VERNAY S, et al. YAl3(BO3)4: a novel NLO crystal for frequency conversion to UV wavelengths[C]//SPIE Photonics Europe. Proc SPIE 6998, Solid State Lasers and Amplifiers Ⅲ, Strasbourg, France. 2008, 6998: 261-272. [3] YE N, STONE-SUNDBERG J L, HRUSCHKA M A, et al. Nonlinear optical crystal YxLayScz(BO3)4(x+y+z=4)[J]. Chemistry of Materials, 2005, 17(10): 2687-2692. [4] ZHANG J X, WANG G L, LIU Z L, et al. Growth and optical properties of a new nonlinear Na3La9O3(BO3)8 crystal[J]. Optics Express, 2010, 18(1): 237-243. [5] 曹付允,徐 军,朱桂芳,等.区域紫外激光保密通信及其应用[J].光通信技术,2006,30(5):59-61. CAO F Y, XU J, ZHU G F, et al. Regional ultraviolet laser secure communication and its application[J]. Optical Communication Technology, 2006, 30(5): 59-61(in Chinese). [6] 陈 亮,游利兵,王庆胜,等.紫外激光诱导击穿光谱的应用与发展[J].激光技术,2017,41(5):619-625. CHEN L, YOU L B, WANG Q S, et al. Application and development of UV laser induced breakdown spectroscopy[J]. Laser Technology, 2017, 41(5): 619-625(in Chinese). [7] 韩微微,杨松涛,高爱梅.紫外激光在精细加工中的应用研究[J].电子工业专用设备,2011,40(3):17-20. HAN W W, YANG S T, GAO A M. Application research on UV laser micron machining[J]. Equipment for Electronic Products Manufacturing, 2011, 40(3): 17-20(in Chinese). [8] 王 芳.高能深紫外激光的产生及应用技术研究[D].北京:中国工程物理研究院,2020:1-4. WANG F. Study on generation and application of high energy DUV lasers[D]. Beijing: China Academy of Engineering Physics, 2020: 1-4 (in Chinese). [9] DEWEY C F, COOK W R, HODGSON R T, et al. Frequency doubling in KB5O8·4H2O and NH4B5O8·4H2O to 217.3 nm[J]. Applied Physics Letters, 1975, 26(12): 714-716. [10] MUTAILIPU M, POEPPELMEIER K R, PAN S L. Borates: a rich source for optical materials[J]. Chemical Reviews, 2021, 121(3): 1130-1202. [11] MUTAILIPU M, ZHANG M, YANG Z H, et al. Targeting the next generation of deep-ultraviolet nonlinear optical materials: expanding from borates to borate fluorides to fluorooxoborates[J]. Accounts of Chemical Research, 2019, 52(3): 791-801. [12] HELLER G. A survey of structural types of borates and polyborates[M]//Topics in Current Chemistry. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986: 39-98. [13] CHEN C T, WU B C, JIANG A D, et al. A new-type ultraviolet SHG crystal β-BaB2O4[J]. Science in China, Ser B, 1985, 28(3): 235-243. [14] CHENG L K, BOSENBERG W R, TANG C L. Broadly tunable optical parametric oscillation in β-BaB2O4[J]. Applied Physics Letters, 1988, 53(3): 175-177. [15] CHEN C T, WU Y C, JIANG A D, et al. New nonlinear-optical crystal: LiB3O5[J]. Journal of the Optical Society of America B, 1989, 6(4): 616. [16] XUE Q H, ZHENG Q, BU Y K, et al. High-power efficient diode-pumped Nd∶YVO4/LiB3O5 457 nm blue laser with 4.6 W of output power[J]. Optics Letters, 2006, 31(8): 1070-1072. [17] CHEN C T, XU Z Y, DENG D Q, et al. The vacuum ultraviolet phase-matching characteristics of nonlinear optical KBe2BO3F2 crystal[J]. Applied Physics Letters, 1996, 68(21): 2930-2932. [18] WANG X Y, YAN X, LUO S Y, et al. Flux growth of large KBBF crystals by localized spontaneous nucleation[J]. Journal of Crystal Growth, 2011, 318(1): 610-612. [19] WU B C, TANG D, YE N, et al. Linear and nonlinear optical properties of the KBe2BO3F2 (KBBF) crystal[J]. Optical Materials, 1996, 5(1/2): 105-109. [20] GAO M G, WU H P, YU H W, et al. BaYOBO3: a deep-ultraviolet rare-earth oxy-borate with a large second harmonic generation response[J]. Science China Chemistry, 2021, 64(7): 1184-1191. [21] JIA Z, ZENG Q D, GONG P F, et al. Nonlinear-optical crystal Rb3YB6O12 with condensed B5O10 blocks that exhibits an intriguing structural arrangement and a short ultraviolet absorption edge[J]. Inorganic Chemistry, 2020, 59(18): 13029-13033. [22] YAN X, LUO S Y, LIN Z S, et al. ReBe2B5O11 (Re=Y, Gd): rare-earth beryllium borates as deep-ultraviolet nonlinear-optical materials[J]. Inorganic Chemistry, 2014, 53(4): 1952-1954. [23] FENG J C, LIU Y Q, LI Y F, et al. La2SrB10O19: a promising ultraviolet nonlinear optical crystal with an enhanced nonlinear optical effect and shortened cutoff edge[J]. Crystal Growth & Design, 2020, 20(8): 5626-5632. [24] LI K, ZHANG G C, GUO S, et al. Linear and nonlinear optical properties of Na3La2(BO3)3 crystal[J]. Optics & Laser Technology, 2013, 54: 407-412. [25] ZOU G H, MA Z J, WU K C, et al. Cadmium-rare earth oxyborates Cd4ReO(BO3)3 (Re=Y, Gd, Lu): congruently melting compounds with large SHG responses[J]. Journal of Materials Chemistry, 2012, 22(37): 19911-19918. [26] YU X S, YUE Y C, YAO J Y, et al. YAl3(BO3)4: crystal growth and characterization[J]. Journal of Crystal Growth, 2010, 312(20): 3029-3033. [27] JAQUE D, CAPMANY J, GARCıA SOLÉ J. Red, green, and blue laser light from a single Nd∶YAl3(BO3)4 crystal based on laser oscillation at 1.3 μm[J]. Applied Physics Letters, 1999, 75(3): 325-327. [28] TAN Y, LUAN Q F, CHEN F, et al. Simultaneous generation of violet, blue, and green lasers using Nd∶YAl3(BO3)4 channel waveguides under pumping at 815 nm[J]. Physica Status Solidi (RRL) - Rapid Research Letters, 2013, 7(11): 1018-1021. [29] 陈鹏允.几种稀土硼酸盐结构与性能研究[D].北京:中国科学院大学,2016:4-5. CHEN P Y. Study on structure and properties of several rare earth borates[D]. Beijing: University of Chinese Academy of Sciences, 2016: 4-5 (in Chinese). [30] IWAI M, KOBAYASHI T, FURUYA H, et al. Crystal growth and optical characterization of rare-earth (Re) calcium oxyborate ReCa4O(BO3)3 (Re=Y or Gd) as new nonlinear optical material[J]. Japanese Journal of Applied Physics, 1997, 36(Part 2, No. 3A): L276-L279. [31] YE Q, CHAI B H T. Crystal growth of YCa4O(BO3)3 and its orientation[J]. Journal of Crystal Growth, 1999, 197(1/2): 228-235. [32] TU X N, WANG S, XIONG K N, et al. Research on growth and defects of 5 in. YCOB single crystal[J]. Journal of Crystal Growth, 2018, 488: 23-28. [33] ZHANG S J, CHENG Z X, ZHANG S J, et al. A new nonlinear optical crystal GdCa4O(BO3)3[J]. Chinese Physics Letters, 1999, 16(3): 184-186. [34] LU J H, LI G M, LIU J H, et al. Second harmonic generation and self-frequency doubling performance in Nd∶GdCa4O(BO3)3 crystal[J]. Optics Communications, 1999, 168(5/6): 405-408. [35] WANG J Y, ZHANG H J, WANG Z P, et al. Watt-level self-frequency-doubling Nd∶GdCOB lasers[J]. Optics Express, 2010, 18(11): 11058-11062. [36] WANG G L, LU J H, CUI D F, et al. Efficient second harmonic generation in a new nonlinear La2CaB10O19 crystal[J]. Optics Communications, 2002, 209(4/5/6): 481-484. [37] WU Y C, LIU J G, FU P Z, et al. A new lanthanum and calcium borate La2CaB10O19[J]. Chemistry of Materials, 2001, 13(3): 753-755. [38] YAN X, LUO S Y, LIN Z S, et al. LaBeB3O7: a new phase-matchable nonlinear optical crystal exclusively containing the tetrahedral XO4 (X=B and Be) anionic groups[J]. Journal of Materials Chemistry C, 2013, 1(22): 3616. [39] YUE Y C, ZHU Y Y, ZHAO Y, et al. Growth and nonlinear optical properties of GdAl3(BO3)4 in a flux without molybdate[J]. Crystal Growth & Design, 2016, 16(1): 347-350. [40] ZHAO S G, ZHANG G C, YAO J Y, et al. K6Li3Sc2B15O30: a new nonlinear optical crystal with a short absorption edge[J]. CrystEngComm, 2012, 14(16): 5209-5214. [41] MUTAILIPU M, XIE Z Q, SU X, et al. Chemical cosubstitution-oriented design of rare-earth borates as potential ultraviolet nonlinear optical materials[J]. Journal of the American Chemical Society, 2017, 139(50): 18397-18405. [42] XIE Z Q, MUTAILIPU M, HE G J, et al. A series of rare-earth borates K7MRE2B15O30 (M = Zn, Cd, Pb; RE = Sc, Y, Gd, Lu) with large second harmonic generation responses[J]. Chemistry of Materials, 2018, 30(7): 2414-2423. [43] ZHAO S G, ZHANG G C, YAO J Y, et al. K3YB6O12: a new nonlinear optical crystal with a short UV cutoff edge[J]. Materials Research Bulletin, 2012, 47(11): 3810-3813. [44] KUZNETSOV A B, EZHOV D M, KOKH K A, et al. Nonlinear optical crystals K7CaR2(B5O10)3 (R=Nd, Yb), growth and properties[J]. Journal of Crystal Growth, 2019, 519: 54-59. [45] FENG J H, XU X, HU C L, et al. K6ACaSc2(B5O10)3 (A=Li, Na, Li0.7Na0.3): nonlinear-optical materials with short UV cutoff edges[J]. Inorganic Chemistry, 2019, 58(4): 2833-2839. [46] LI Y F, LIANG F, SONG H M, et al. Rb7SrY2(B5O10)3: a rare-earth pentaborate with moderate second-harmonic response and interesting phase-matching behavior[J]. Inorganic Chemistry, 2019, 58(14): 8943-8947. [47] LIU W, LIU X M, SHEN J, et al. A new non-centrosymmetric Gd-based borate crystal Rb7SrGd2(B5O10)3: growth, structure, and nonlinear optical and magnetic properties[J]. Dalton Transactions, 2020, 49(27): 9355-9361. [48] LIU W H, LIU X M, MENG X H, et al. Two non-centrosymmetric scandium borate nonlinear optical crystals containing the B5O10 anion group[J]. Journal of Alloys and Compounds, 2022, 902: 163832. [49] KUZNETSOV A B, EZHOV D M, KOKH K A, et al. Flux growth and optical properties of K7CaY2(B5O10)3 nonlinear crystal[J]. Materials Research Bulletin, 2018, 107: 333-338. [50] ZHOU J F, LI R K. A non-centrosymmetric compound K7Li2Y2B15O30 by introducing more alkali metals into A7MRe2B15O30 family[J]. Journal of Solid State Chemistry, 2021, 304: 122630. |