[1] CHU S Y, CHEN T Y, TSAI I T. Effects of sintering temperature on the dielectric and piezoelectric properties of Nb-doped PZT ceramics and their applications[J]. Integrated Ferroelectrics, 2003, 58(1): 1293-1303. [2] RICOTE J, WHATMORE R W, BARBER D J. Studies of the ferroelectric domain configuration and polarization of rhombohedral PZT ceramics[J]. Journal of Physics: Condensed Matter, 2000, 12(3): 323-337. [3] ZHENG H, REANEY I M, LEE W E, et al. Effects of strontium substitution in Nb-doped PZT ceramics[J]. Journal of the European Ceramic Society, 2001, 21(10/11): 1371-1375. [4] LIU X L, WANG G D, LI M Y, et al. Development of hard high-temperature piezoelectric ceramics for actuator applications[J]. Journal of Materials Science: Materials in Electronics, 2015, 26(12): 9350-9354. [5] GUO R, CROSS L E, PARK S E, et al. Origin of the high piezoelectric response in PbZr1-xTixO3[J]. Physical Review Letters, 2000, 84(23): 5423-5426. [6] VENKATRAGAVARAJ E, SATISH B, VINOD P R, et al. Piezoelectric properties of ferroelectric PZT-polymer composites[J]. Journal of Physics D: Applied Physics, 2001, 34(4): 487-492. [7] BABU T A, RAMESH K V, BADAPANDA T, et al. Structural and electrical studies of excessively Sm2O3 substituted soft PZT nanoceramics[J]. Ceramics International, 2021, 47(22): 31294-31301. [8] 肖正泉,缪 强,罗豪甦.几种钙钛矿型晶体极化性能的从头算分子动力学研究[J].化学学报,2006,64(12):1209-1212. XIAO Z Q MIAO Q, LUO H S. Ab initio molecular dynamics study on polarization property of selected perovskite structure crystals[J]. Acta Chimica Sinica, 2006, 64(12): 1209-1212(in Chinese). [9] AMARANDE L, CIOANGHER M C, TOMA V, et al. Hard/soft effects of multivalence co-dopants in correlation with their location in PZT ceramics[J]. Ceramics International, 2021, 47(23): 33382-33389. [10] HOU Y D, ZHU M K, TIAN C S, et al. Structure and electrical properties of PMZN-PZT quaternary ceramics for piezoelectric transformers[J]. Sensors and Actuators A: Physical, 2004, 116(3): 455-460. [11] MARSILIUS M, GRANZOW T, JONES J L. Effect of electrical and mechanical poling history on domain orientation and piezoelectric properties of soft and hard PZT ceramics[J]. Science and Technology of Advanced Materials, 2011, 12(1): 015002. [12] MOROZOV M I, EINARSRUD M A, TOLCHARD J R, et al. In-situ structural investigations of ferroelasticity in soft and hard rhombohedral and tetragonal PZT[J]. Journal of Applied Physics, 2015, 118(16): 164104. [13] RANJAN R, KUMAR R, KUMAR N, et al. Impedance and electric modulus analysis of Sm-modified Pb(Zr0.55Ti0.45)1-x/4O3 ceramics[J]. Journal of Alloys and Compounds, 2011, 509(22): 6388-6394. [14] TAKAHASHI S. Effects of impurity doping in lead zirconate-titanate ceramics[J]. Ferroelectrics, 1982, 41(1): 143-156. [15] SLOUKA C, KAINZ T, NAVICKAS E, et al. The effect of acceptor and donor doping on oxygen vacancy concentrations in lead zirconate titanate (PZT)[J]. Materials, 2016, 9(11): E945. [16] YI M X. Research on the polarization technology of PZT piezoelectric ceramic[J]. Piezoelectric & Acoustooptics, 2006, 28(6): 736-737. [17] UNRUAN M, ANANTA S, LAOSIRITAWORN Y, et al. Effects of parallel and perpendicular compressive stresses on the dielectric and ferroelectric properties of soft PZT ceramics[J]. Ferroelectrics, 2010, 400(1): 144-154. [18] FRÖMLING T, SCHINTLMEISTER A, HUTTER H, et al. Oxide ion transport in donor-doped Pb(ZrxTi1-x)O3: the role of grain boundaries[J]. Journal of the American Ceramic Society, 2011, 94(4): 1173-1181. [19] GALLO C A, SCHULZE W A. Alternating-current-assisted poling of lead zirconate titanate (PZT)[J]. Journal of the American Ceramic Society, 1987, 70(2): C-33. [20] DEANGELIS D A, SCHULZE G W. Performance of PZT8 versus PZT4 piezoceramic materials in ultrasonic transducers[J]. Physics Procedia, 2016, 87: 85-92. [21] RAMACHANDRAN V P, THOMAS D, VINOD T K. Design and development of a broadband spherical hydrophone using PZT-4[J].ISSS Journal of Micro and Smart Systems, 2020, 9(2): 163-171. [22] JO W, RÖDEL J. Electric-field-induced volume change and room temperature phase stability of (Bi1/2Na1/2)TiO3-x mol.% BaTiO3 piezoceramics[J]. Applied Physics Letters, 2011, 99(4): 042901. [23] LUO C, KARAKI T, YAMASHITA Y, et al. High temperature and low voltage AC poling for 0.24Pb(In1/2Nb1/2)O3-0.46Pb(Mg1/3Nb2/3)O3-0.30PbTiO3 piezoelectric single crystals manufactured by continuous-feeding Bridgman method[J]. Journal of Materiomics, 2021, 7(3): 621-628. [24] SUN Y Q, KARAKI T, FUJII T, et al. Enhanced electric property of relaxor ferroelectric crystals with low AC voltage high-temperature poling[J]. Japanese Journal of Applied Physics, 2020, 59(SP): SPPD08. [25] CHANG W Y, CHUNG C C, LUO C T, et al. Dielectric and piezoelectric properties of 0.7 Pb(Mg1/3Nb2/3)O3-0.3 PbTiO3 single crystal poled using alternating current[J]. Materials Research Letters, 2018, 6(10): 537-544. [26] TAO H, WU J G. New poling method for piezoelectric ceramics[J]. Journal of Materials Chemistry C, 2017, 5(7): 1601-1606. [27] WAN H T, LUO C T, CHUNG C C, et al. Enhanced dielectric and piezoelectric properties of manganese-doped Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals by alternating current poling[J]. Applied Physics Letters, 2021, 118(10): 102904. [28] HONG C H, WANG Z J, SU B, et al. Enhanced piezoelectric and dielectric properties of Pb(Yb1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 crystals by combining alternating and direct current poling[J]. Journal of Applied Physics, 2021, 129(12): 124101. |