[1] LI H Y, WU H P, SU X, et al. Pb3B6O11F2: the first non-centrosymmetric lead borate fluoride with a large second harmonic generation response[J]. Journal of Materials Chemistry C, 2014, 2(9): 1704-1710. [2] KAMINSKII A A. Modern developments in the physics of crystalline laser materials[J]. Physica Status Solidi (a), 2003, 200(2): 215-296. [3] SIONCKE S, VERBIEST T, PERSOONS A. Second-order nonlinear optical properties of chiral materials[J]. Materials Science and Engineering: R: Reports, 2003, 42(5/6): 115-155. [4] BAIHETI T, HAN S J, TUDI A, et al. Alignment of polar moieties leading to strong second harmonic response in KCsMoP2O9[J]. Chemistry of Materials, 2020, 32(7): 3297-3303. [5] JIA M H, CHENG X Y, WHANGBO M H, et al. Second harmonic generation responses of KH2PO4: importance of K and breaking down of Kleinman symmetry[J]. RSC Advances, 2020, 10(44): 26479-26485. [6] ZHANG L S, XU M X, LIU B A, et al. New annealing method to improve KD2PO4 crystal quality: learning from high temperature phase transition[J]. CrystEngComm, 2015, 17(25): 4705-4711. [7] ANIS M, HUSSAINI S S, SHKIR M, et al. Uncovering the influence of Ni2+ on optical and dielectric properties of NH4H2PO4 (ADP) crystal[J]. Optik, 2018, 157: 592-596. [8] LIU S, SHAO L Y, ZHANG X J, et al. KTiOPO4 as a novel anode material for sodium-ion batteries[J]. Journal of Alloys and Compounds, 2018, 754: 147-152. [9] LI Z Q, CHEN Y, ZHU P F, et al. Electronic structure and properties of RbTiOPO4∶Ta crystals[J]. RSC Advances, 2017, 7(84): 53111-53116. [10] CHEN J E, XIONG L, CHEN L, et al. Ba2NaClP2O7: unprecedented phase matchability induced by symmetry breaking and its unique fresnoite-type structure[J]. Journal of the American Chemical Society, 2018, 140(43): 14082-14086. [11] ZHAO S G, YANG X Y, YANG Y, et al. Non-centrosymmetric RbNaMgP2O7 with unprecedented thermo-induced enhancement of second harmonic generation[J]. Journal of the American Chemical Society, 2018, 140(5): 1592-1595. [12] YU H W, YOUNG J, WU H P, et al. M4Mg4(P2O7)3 (M = K, Rb): structural engineering of pyrophosphates for nonlinear optical applications[J]. Chemistry of Materials, 2017, 29(4): 1845-1855. [13] ZHAO S G, GONG P F, LUO S Y, et al. Tailored synthesis of a nonlinear optical phosphate with a short absorption edge[J]. Angewandte Chemie International Edition, 2015, 54(14): 4217-4221. [14] ZHAO S G, GONG P F, LUO S Y, et al. Deep-ultraviolet transparent phosphates RbBa2(PO3)5 and Rb2Ba3(P2O7)2 show nonlinear optical activity from condensation of [PO4]3- units[J]. Journal of the American Chemical Society, 2014, 136(24): 8560-8563. [15] ZHOU X Y, HUANG J B, CAI G M, et al. Large optical polarizability causing positive effects on the birefringence of planar-triangular BO3 groups in ternary borates[J]. Dalton Transactions, 2020, 49(10): 3284-3292. [16] PIENACK N, BENSCH W. In-situ monitoring of the formation of crystalline solids[J]. Angewandte Chemie International Edition, 2011, 50(9): 2014-2034. [17] MUTAILIPU M, LI Z, ZHANG M, et al. The mechanism of large second harmonic generation enhancement activated by Zn2+ substitution[J]. Physical Chemistry Chemical Physics, 2016, 18(48): 32931-32936. [18] XIE Z Q, MUTAILIPU M, HE G J, et al. A series of rare-earth borates K7MRE2B15O30 (M=Zn, Cd, Pb; RE=Sc, Y, Gd, Lu) with large second harmonic generation responses[J]. Chemistry of Materials, 2018, 30(7): 2414-2423. [19] WU Y, YAO J Y, ZHANG J X, et al. Potassium zinc borate, KZnB3O6[J]. Acta Crystallographica Section E Structure Reports Online, 2010, 66(5): i45. [20] XU X A, HU C L, KONG F, et al. ChemInform abstract: Ca10Ge16B6O51 and Cd12Ge17B8O58: two types of new 3D frameworks based on BO4 tetrahedra and 1D [Ge4O12]n chains[J]. ChemInform, 2011, 42(48): 8861-8868. [21] YANG L, FAN W L, LI Y L, et al. Theoretical insight into the structural stability of KZnB3O6 polymorphs with different BOx polyhedral networks[J]. Inorganic Chemistry, 2012, 51(12): 6762-6770. [22] BROW R K, TALLANT D R, MYERS S T, et al. The short-range structure of zinc polyphosphate glass[J]. Journal of Non-Crystalline Solids, 1995, 191(1/2): 45-55. [23] LIRA A, SPEGHINI A, CAMARILLO E, et al. Spectroscopic evaluation of Zn(PO3)2∶Dy3+ glass as an active medium for solid state yellow laser[J]. Optical Materials, 2014, 38: 188-192. [24] AVERBUCH-POUCHOT M M T, DURIF A. Determination des diagrammes d’Equilibre Cd(PO3)2-LiPO3 et Cd(PO3)2-NaPO3; donnees cristallographioues sur CdLi2(PO3)4, CdNa(PO3)3 et CdNa4(PO3)6[J]. Materials Research Bulletin, 1969, 4(12): 859-867. [25] WEIL M, GLAUM R. Mercury(II) polyphosphate, Hg(PO3)2[J]. Acta Crystallographica Section C Crystal Structure Communications, 2000, 56(2): 133-135. [26] SEGALL M D, LINDAN P J D, PROBERT M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code[J]. Journal of Physics: Condensed Matter, 2002, 14(11): 2717-2744. [27] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. [28] PERDEW J P, CHEVARY J A, VOSKO S H, et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation[J]. Physical Review B, Condensed Matter, 1992, 46(11): 6671-6687. [29] 陈创天. 晶体电光和非线性光学效应的离子基团理论(Ⅰ): 利用氧八面体畸变模型计算BaTiO3晶体电光及倍频系数[J]. 物理学报, 1976, 25(2): 146-161. CHEN C T. An ionic grouping theory of the electro-optical and non-linear optical effects of crystals (ⅰ) a theoretical calculation of electro-optical and second optical harmonic coefficients of barium titanate crystals based on a deformed oxygen-octahedra[J]. Acta Physica Sinica, 1976, 25(2): 146-161 (in Chinese). [30] 陈创天. 晶体电光和非线性光学效应的离子基团理论(Ⅱ) 利用(IO3)-1离子基团的分子轨道计算α-LiIO3晶体的倍频系数[J]. 物理学报, 1977, 26(2): 124-132. CHEN C T. An ionic grouping theory of the electro-opticai and non-linear optical effects of crystals (ⅱ) a theoretical calculation of the second harmonic optical coefficients of the lithium iodate crystal based on a highly deformed oxygen-octahedra model i[J]. Acta Physica Sinica, 1977, 26(2): 124-132 (in Chinese). [31] 陈创天. 晶体电光和非线性光学效应的离子基团理论(Ⅲ) 利用畸变氧八面体的离子基团模型计算LiNbO3, LiTaO3, KNbO3, BNN晶体的电光和倍频系数[J]. 物理学报, 1977, 26(6): 486-499. CHEN C T. An ionic grouping theory of the electro-optical and non-linear optical effects of crystals (ⅲ) a theoretical calculation of the electro-optical and optical second harmonic coefficients for LiNBO3, LiTaO3, KNbO3, and BNN crystals based on a defo[J]. Acta Physica Sinica, 1977, 26(6): 486-499 (in Chinese). [32] 陈创天. 晶体电光和非线性光学效应的离子基团理论(Ⅳ) 钙钛矿、钨青铜型、LiNbO3型晶体线性极化率计算[J]. 物理学报, 1978, 27(1): 41-46. CHEN C T. An ionic grouping theory of the electro-optical and non-linear optical effects of crystals (iv) the calculation of linear optical susceptibilities in crystals of the perovskite and the tungsten bronze structure types[J]. Acta Physica Sinica, 1978, 27(1): 41-46 (in Chinese). [33] TUDI A, HAN S J, YANG Z H, et al. Potential optical functional crystals with large birefringence: recent advances and future prospects[J]. Coordination Chemistry Reviews, 2022, 459: 214380. |