[1] 唐 炬, 杨 东, 曾福平, 等. 基于分解组分分析的SF6设备绝缘故障诊断方法与技术的研究现状[J]. 电工技术学报, 2016, 31(20): 41-54. TANG J, YANG D, ZENG F P, et al. Research status of SF6 insulation equipment fault diagnosis method and technology based on decomposed components analysis[J]. Transactions of China Electrotechnical Society, 2016, 31(20): 41-54 (in Chinese). [2] WU Y J, DING D L, WANG Y, et al. Defect recognition and condition assessment of epoxy insulators in gas insulated switchgear based on multi-information fusion[J]. Measurement, 2022, 190: 110701. [3] 伍云健, 胡益然, 林 慧, 等. 基于席夫碱基的可降解环氧绝缘材料性能研究[J/OL]. 高电压技术, 2023: 1-8. [2023-08-01].DOI:10.13336/j.1003-6520.hve.20221757. WU Y, HU Y, LIN H, et al. Study on properties of degradable epoxy insulation materials based on Schiff base[J/OL]. High Voltage Engineering, 2023: 1-8 [2023-08-01]. DOI: 10.13336/j.1003-6520.hve.20221757 (in Chinese). [4] 贾申利, 贾荣照, 朱 璐. 真空开断型环保GIS发展现状及趋势[J]. 高压电器, 2022, 58(9): 1-12. JIA S L, JIA R Z, ZHU L. Advances in the development of vacuum-based eco-friendly GIS[J]. High Voltage Apparatus, 2022, 58(9): 1-12 (in Chinese). [5] 张晓星, 姚 尧, 唐 炬, 等. SF6放电分解气体组分分析的现状和发展[J]. 高电压技术, 2008, 34(4): 664-669+747. ZHANG X X, YAO Y, TANG J, et al. Actuamity and perspective of proximate analysis of SF6 decomposed products under partial discharge[J]. High Voltage Engineering, 2008, 34(4): 664-669+747 (in Chinese). [6] 汲胜昌, 钟理鹏, 刘 凯, 等. SF6放电分解组分分析及其应用的研究现状与发展[J]. 中国电机工程学报, 2015, 35(9): 2318-2332. JI S C, ZHONG L P, LIU K, et al. Research status and development of SF6 decomposition components analysis under discharge and its application[J]. Proceedings of the CSEE, 2015, 35(9): 2318-2332 (in Chinese). [7] 王 辉, 李晓军, 李 舟. SF6电气设备绝缘故障诊断用SO2、H2S气体传感器研究进展[J]. 高压电器, 2019, 55(8): 1-9. WANG H, LI X J, LI Z. Research progress of SO2 and H2S gas sensors for insulation fault detection of SF6 electrical equipment[J]. High Voltage Apparatus, 2019, 55(8): 1-9 (in Chinese). [8] 陈达畅, 唐 炬, 张晓星, 等. 检测SF6分解特征组分的MoS2纳米片气敏特性与机理研究[J]. 中国电机工程学报, 2022, 42(22): 8390-8405. CHEN D C, TANG J, ZHANG X X, et al. Study on gas sensing characteristics and mechanism of MoS2 nanosheets for detecting the characteristic components of SF6 decomposition[J]. Proceedings of the CSEE, 2022, 42(22): 8390-8405 (in Chinese). [9] TANG J, LIU F, ZHANG X X, et al. Partial discharge recognition through an analysis of SF6 decomposition products part 1: decomposition characteristics of SF6 under four different partial discharges[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2012, 19(1): 29-36. [10] TIAN S S, LIU B L, WANG Y X, et al. Adsorption performance of Cu-HfSe2 on air decomposition products: a First-principles study[J]. Materials Today Communications, 2023, 34: 105400. [11] 刘宇鹏, 侯文君, 周 渠, 等. 基于密度泛函理论的油中特征气体在钯掺杂SnP3单层上吸附及传感性能研究[J]. 中国电机工程学报, 2023, 43(5): 2040-2050. LIU Y P, HOU W J, ZHOU Q, et al. Study on adsorption and sensing performance of characteristic gas in oil on palladium-doped SnP3 monolayer based on density functional theory[J]. Proceedings of the CSEE, 2023, 43(5): 2040-2050 (in Chinese). [12] QIN X, LUO C C, LI Y Q, et al. InP3 monolayer as a promising 2D sensing material in SF6 insulation devices[J]. ACS Omega, 2021, 6(44): 29752-29758. [13] LIU Y P, ZHOU Q, MI H W, et al. Gas-sensing mechanism of Cr doped SnP3 monolayer to SF6 partial discharge decomposition components[J]. Applied Surface Science, 2021, 546: 149084. [14] 牟 松, 郑慧宜, 郭小伟, 等. Pd掺杂的SnO2甲烷传感器气敏性能的研究[J]. 传感技术学报, 2022, 35(8): 1039-1045. MOU S, ZHENG H Y, GUO X W, et al. Study on gas sensing performance of Pd-doped SnO2 methane sensor[J]. Chinese Journal of Sensors and Actuators, 2022, 35(8): 1039-1045 (in Chinese). [15] 桂银刚, 陈 盈, 张晓星, 等. 钯掺杂氮化镓纳米管对变压器油中乙烯气体的吸附特性[J]. 高电压技术, 2022, 48(4): 1462-1470. GUI Y G, CHEN Y, ZHANG X X, et al. Adsorption properties of Pd doped GaNNTs nanotubes to transformer oil dissolved C2H4 gas[J]. High Voltage Engineering, 2022, 48(4): 1462-1470 (in Chinese). [16] ZENG F P, WU S Y, LEI Z C, et al. SF6 fault decomposition feature component extraction and triangle fault diagnosis method[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2020, 27(2): 581-589. [17] WANG J, ZHOU Q, LU Z, et al. Adsorption of H2O molecule on TM (Au, Ag) doped-MoS2 monolayer: a first-principles study[J]. Physica E, 2019, 113: 72-78. [18] 王邸博, 陈达畅, 皮守苗, 等. 基于密度泛函理论的SF6分解组分在ZnO(0001)吸附及传感性能研究[J]. 电工技术学报, 2020, 35(7): 1592-1602. WANG D B, CHEN D C, PI S M, et al. Density functional theory study of SF6 decomposed products over ZnO(0001) with gas sensing properties[J]. Transactions of China Electrotechnical Society, 2020, 35(7): 1592-1602 (in Chinese). [19] 皮守苗, 张晓星, 方佳妮, 等. 不同PtNPs掺杂量石墨烯传感器检测SF6分解组分的气敏特性[J]. 高压电器, 2022, 58(2): 67-72+81. PI S M, ZHANG X X, FANG J N, et al. Different PtNPs doped graphene sensor for detecting gas sensitive property of SF6 decomposition components[J]. High Voltage Apparatus, 2022, 58(2): 67-72+81 (in Chinese). [20] ZHANG G Z, WANG Z T, ZHANG X X. Theoretical screening into Ru-doped MoS2 monolayer as a promising gas sensor upon SO2 and SOF2 in SF6 insulation devices[J]. Molecular Physics, 2022. DOI:10.1080/00268976.2021.2018517. [21] WANG Z T, ZHANG G Z, LIU L, et al. Dissolved gas analysis in transformer oil using Ni catalyst decorated PtSe2 monolayer: a DFT study[J]. Chemosensors, 2022, 10(8): 292. [22] WANG J C, ZHANG X X, LIU L, et al. Adsorption of SF6 decomposition products by the S vacancy structure and edge structure of SnS2: a density functional theory study[J]. ACS Omega, 2021, 6(42): 28131-28139. [23] GUI Y G, SHI J Z, XU L N, et al. Aun (n=1-4) cluster doped MoSe2 nanosheet as a promising gas-sensing material for C2H4 gas in oil-immersed transformer[J]. Applied Surface Science, 2021, 541: 148356. |