[1] ZHOU Z, XIA M, ZHONG Y, et al. Dy3+@Mn4+ co-doped Ca14Ga10-mAlmZn6O35 far-red emitting phosphors with high brightness and improved luminescence and energy transfer properties for plant growth LED lights[J]. Journal of Materials Chemistry C, 2017, 5(32): 8201-8210. [2] LI L, PAN Y X, CHEN Z, et al. Tunable luminescence and energy transfer properties of Bi3+ and Mn4+ co-doped Ca14Al10Zn6O35 phosphors for agricultural applications[J]. RSC Advances, 2017, 7(24): 14868-14875. [3] CAO R P, CHEN T, REN Y C, et al. Synthesis and photoluminescence properties of Ca2LaTaO6∶Mn4+ phosphor for plant growth LEDs[J]. Journal of Alloys and Compounds, 2019, 780: 749-755. [4] WANG S, HAN Y J, SHI L, et al. Charge compensation assisted enhanced photoluminescence derived from Al3+-codoped NaLaMgWO6∶Mn4+ phosphors for plant growth lighting applications[J]. Journal of Luminescence, 2020, 226: 117438. [5] LU Z Z, MENG Y B, WEN L L, et al. Double perovskite Ba2LaNbO6∶Mn4+, Yb3+ phosphors: potential application to plant-cultivation LEDs[J]. Dyes and Pigments, 2019, 160: 395-402. [6] ZHANG Y L, LI M H, KONG Z H, et al. Plant habitat-conscious phosphors: tuneable luminescence properties of Dy3+-doped Ca8ZnY(PO4)7 phosphors by co-dopants Mg2+ and B3+[J]. Ceramics International, 2020, 46(8): 11717-11725. [7] SUN Q, WANG S Y, LI B, et al. Synthesis and photoluminescence properties of deep red-emitting CaGdAlO4∶Mn4+ phosphors for plant growth LEDs[J]. Journal of Luminescence, 2018, 203: 371-375. [8] ZHOU Z W, ZHENG J M, SHI R, et al. Ab initio site occupancy and far-red emission of Mn4+ in cubic-phase La(MgTi)1/2O3 for plant cultivation[J]. ACS Applied Materials & Interfaces, 2017, 9(7): 6177-6185. [9] 陈文成. 730 nm远红光LED在植物照明中的应用[J]. 中国照明电器, 2015(8): 29-31. CHEN W C. Application of 730 nm far red light LEDs in horticulture lighting[J]. China Light & Lighting, 2015(8): 29-31 (in Chinese). [10] HUANG X Y, LIANG J, LI B, et al. High-efficiency and thermally stable far-red-emitting NaLaMgWO6∶Mn4+ phosphorsfor indoor plant growth light-emitting diodes[J]. Optics Letters, 2018, 43(14): 3305-3308. [11] SUN Q, WANG S Y, DEVAKUMAR B, et al. Synthesis and photoluminescence properties of novel far-red-emitting BaLaMgNbO6∶Mn4+ phosphors for plant growth LEDs[J]. RSC Advances, 2018, 8(50): 28538-28545. [12] TAKEDA Y, KATO H, KOBAYASHI M, et al. Photoluminescence properties of Mn4+-activated perovskite-type titanates, La2MTiO6∶Mn4+(M=Mg and Zn)[J]. Chemistry Letters, 2015, 44(11): 1541-1543. [13] HAN Y J, WANG S, LIU H, et al. A novel Mn4+-activated garnet-type Li5La3Nb2O12 far red-emitting phosphor with high thermal stability for plant cultivation[J]. Journal of Luminescence, 2020, 219: 116888. [14] XUE P, TIAN L H. A far-red phosphor LaSrZnNbO6∶Mn4+ for plant growth lighting[J]. Optical Materials, 2021, 115: 111063. [15] SUN Q, WANG S Y, DEVAKUMAR B, et al. Novel far-red-emitting SrGdAlO4∶Mn4+ phosphors with excellent responsiveness to phytochrome PFR for plant growth lighting[J]. RSC Advances, 2018, 8(69): 39307-39313. [16] HAN Y J, WANG S, LIU H, et al. Synthesis and luminescent properties of a novel deep-red phosphor Sr2GdNbO6∶Mn4+ for indoor plant growth lighting[J]. Journal of Luminescence, 2020, 220: 116968. [17] YUAN H L, HUANG Z Z, XU L Y, et al. La2MgTiO6∶Bi3+/Mn4+ photoluminescence materials: molten salt preparation, Bi3+→Mn4+ energy transfer and thermostability[J]. Journal of Luminescence, 2020, 224: 117290. [18] AVDEEV M, SEABRA M P, FERREIRA V M. Crystal structure of dielectric ceramics in the La(Mg0.5Ti0.5)O3-BaTiO3 system[J]. Journal of Materials Research, 2002, 17(5): 1112-1117. [19] 胡美兰. A2MgTiO6∶Mn4+(A=La, Y, Gd)双钙钛矿型红色荧光粉的低温合成及其发光性能研究[D]. 赣州: 江西理工大学, 2019. HU M L. Low temperature synthesis and luminescent properties of A2Mg6∶Mn4+ (A = La, Y, Gd) double perovskite red phosphor[D]. Ganzhou: Jiangxi University of Science and Technology, 2019 (in Chinese). [20] WANG M H, HAN Z, HUANG J X, et al. NaLaMgWO6∶Mn4+/Pr3+/Bi3+ bifunctional phosphors for optical thermometer and plant growth illumination matching phytochrome PR and PFR[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 259: 119915. [21] BONDZIOR B, STEFAN'SKA D, V T, et al. Red luminescence with controlled rise time in La2 MgTiO6∶Eu3+[J]. Journal of Alloys and Compounds, 2021, 852: 157074. [22] GAO Y, HUANG F, LIN H, et al. Intervalence charge transfer state interfered Pr3+ luminescence: a novel strategy for high sensitive optical thermometry[J]. Sensors and Actuators B: Chemical, 2017, 243: 137-143. [23] SHI R, LIN L T, DORENBOS P, et al. Development of a potential optical thermometric material through photoluminescence of Pr3+ in La2MgTiO6[J]. Journal of Materials Chemistry C, 2017, 5(41): 10737-10745. [24] BOUTINAUD P, PINEL E, DUBOIS M, et al. UV-to-red relaxation pathways in CaTiO3∶Pr3+[J]. Journal of Luminescence, 2005, 111(1/2): 69-80. [25] ZHANG N N, JIANG X X, WANG Y N, et al. Synthesis, structure and luminescence characteristics of La3Ga5SiO14∶Pr3+ phosphors[J]. Journal of Alloys and Compounds, 2023, 932: 167626. |