[1] WANG X C, WU P X, WANG Z Q, et al. Chlorine-modified Ru/TiO2 catalyst for selective guaiacol hydrodeoxygenation[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(8): 3083-3094. [2] SHEN Y, LIU S S, LU L, et al. Photocatalytic degradation of toluene by a TiO2 p-n homojunction nanostructure[J]. ACS Applied Nano Materials, 2022, 5(12): 18612-18621. [3] XU H, WANG W J, QIN L G, et al. Controllable synthesis of anatase TiO2 nanosheets grown on amorphous TiO2/C frameworks for ultrafast pseudocapacitive sodium storage[J]. ACS Applied Materials & Interfaces, 2020, 12(39): 43813-43823. [4] BANERJEE S, ZANGIABADI A, MAHDAVI-SHAKIB A, et al. Quantitative structural characterization of catalytically active TiO2 nanoparticles[J]. ACS Applied Nano Materials, 2019, 2(10): 6268-6276. [5] LI Y, YANG W G, WANG C, et al. Achieving controllable CoTiO3-encapsulated TiO2 heterostructures for enhanced photoelectrochemical water splitting[J]. ACS Applied Energy Materials, 2019, 2(11): 8229-8235. [6] LIANG Z, HOU H L, FANG Z, et al. Hydrogenated TiO2 nanorod arrays decorated with carbon quantum dots toward efficient photoelectrochemical water splitting[J]. ACS Applied Materials & Interfaces, 2019, 11(21): 19167-19175. [7] TSHABALALA Z P, MOKOENA T P, JOZELA M, et al. TiO2 nanowires for humidity-stable gas sensors for toluene and xylene[J]. ACS Applied Nano Materials, 2021, 4(1): 702-716. [8] LIU T, LU Z H, ZHAI H, et al. Hierarchical porous PLLA@TiO2 fibrous membrane for enhanced and stable photocatalytic degradation efficiency[J]. ACS ES&T Water, 2023, 3(2): 342-353. [9] LI Z Q, QUE Y P, MO L E, et al. One-pot synthesis of mesoporous TiO2 micropheres and its application for high-efficiency dye-sensitized solar cells[J]. ACS Applied Materials & Interfaces, 2015, 7(20): 10928-10934. [10] WANG S L, LI J, WANG S J, et al. Two-dimensional C/TiO2 heterogeneous hybrid for noble-metal-free hydrogen evolution[J]. ACS Catalysis, 2017, 7(10): 6892-6900. [11] CHANG Y Q, DONG C, ZHOU D X, et al. Fabrication and elastic properties of TiO2 nanohelix arrays through a pressure-induced hydrothermal method[J]. ACS Nano, 2021, 15(9): 14174-14184. [12] YI Q H, CONG S, WANG H, et al. Heterostructure-induced light absorption and charge-transfer optimization of a TiO2 photoanode for photoelectrochemical water splitting[J]. ACS Applied Energy Materials, 2021, 4(12): 14440-14446. [13] HUANG Z W, GURNEY R S, WANG Y L, et al. TDI/TiO2 hybrid networks for superhydrophobic coatings with superior UV durability and cation adsorption functionality[J]. ACS Applied Materials & Interfaces, 2019, 11(7): 7488-7497. [14] ZHANG C, ZHOU Y M, BAO J H, et al. Sn2+-doped double-shelled TiO2 hollow nanospheres with minimal Pt content for significantly enhanced solar H2 production[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(5): 7128-7137. [15] WANG M G, HAN J E, HU Y M, et al. Carbon-incorporated NiO/TiO2 mesoporous shells with p-n heterojunctions for efficient visible light photocatalysis[J]. ACS Applied Materials & Interfaces, 2016, 8(43): 29511-29521. [16] XUE Y, WANG F, LUO H J, et al. Preparation of noniridescent structurally colored PS@TiO2 and Air@C@TiO2 core-shell nanoparticles with enhanced color stability[J]. ACS Applied Materials & Interfaces, 2019, 11(37): 34355-34363. [17] ZHANG J, LIU X Y, XING A, et al. Template-oriented synthesis of nitrogen-enriched porous carbon nanowhisker by hollow TiO2 spheres nanothorns for methanol electrooxidation[J]. ACS Applied Energy Materials, 2018, 1(6): 2758-2768. [18] CAI Y, WANG H E, ZHAO X, et al. Walnut-like porous core/shell TiO2 with hybridized phases enabling fast and stable lithium storage[J]. ACS Applied Materials & Interfaces, 2017, 9(12): 10652-10663. [19] XIE Z A, YU T T, SONG W Y, et al. Highly active nanosized anatase TiO2-x oxide catalysts in situ formed through reduction and Ostwald ripening processes for propane dehydrogenation[J]. ACS Catalysis, 2020, 10(24): 14678-14693. [20] LI D, QIN Q, DUAN X C, et al. General one-pot template-free hydrothermal method to metal oxide hollow spheres and their photocatalytic activities and lithium storage properties[J]. ACS Applied Materials & Interfaces, 2013, 5(18): 9095-9100. [21] PAN J H, ZHANG X W, DU A J, et al. Self-etching reconstruction of hierarchically mesoporous F-TiO2 hollow microspherical photocatalyst for concurrent membrane water purifications[J]. Journal of the American Chemical Society, 2008, 130(34): 11256-11257. [22] SHANG S Q, JIAO X L, CHEN D R. Template-free fabrication of TiO2 hollow spheres and their photocatalytic properties[J]. ACS Applied Materials & Interfaces, 2012, 4(2): 860-865. [23] GUO X S, CHEN Y L, SU M, et al. Enhanced electrorheological performance of Nb-doped TiO2 microspheres based suspensions and their behavior characteristics in low-frequency dielectric spectroscopy[J]. ACS Applied Materials & Interfaces, 2015, 7(48): 26624-26632. |