[1] BÜHRER W, HÄLG W. Crystal structure of high-temperature cuprous iodide and cuprous bromide[J]. Electrochimica Acta, 1977, 22(7): 701-704. [2] SIRIMANNE P M, SOGA T, KUNST M. Observation of microwave conductivity in copper iodide films and relay effect in the dye molecules attached to CuI photocathode[J]. Journal of Solid State Chemistry, 2005, 178(10): 3010-3013. [3] MA Y S, GU M, HUANG S M, et al. Colloidal synthesis of uniform CuI nanoparticles and their size dependent optical properties[J]. Materials Letters, 2013, 100: 166-169. [4] PISHTSHEV A, KARAZHANOV S Z. Structure-property relationships in cubic cuprous iodide: a novel view on stability, chemical bonding, and electronic properties[J]. The Journal of Chemical Physics, 2017, 146(6): 064706. [5] LIU A, ZHU H H, PARK W T, et al. High-performance p-channel transistors with transparent Zn doped-CuI[J]. Nature Communications, 2020, 11: 4309. [6] GENG J F, LI M, WANG H Y, et al. Crystal growth and optical properties of γ-CuI by vertical Bridgman method[J]. Journal of Crystal Growth, 2021, 568/569: 126165. [7] XIA C C, XIONG G, YOU L X, et al. Synthesis, crystal structure, and photoluminescent properties of a series of LnⅢ-CuⅠ heterometallic coordination polymers based on Cu4I3 clusters and ln-ina rod units[J]. Australian Journal of Chemistry, 2017, 70(8): 943. [8] NIU S R, ZHAO F Z, HANG Y, et al. Enhanced p-CuI/n-ZnO photodetector based on thermal evaporated CuI and pulsed laser deposited ZnO nanowires[J]. Optics Letters, 2020, 45(2): 559-562. [9] SUN C, LLANOS L, ARCE P, et al. Nuclearity control for efficient thermally activated delayed fluorescence in a CuI complex and its halogen-bridged dimer[J]. Chemistry of Materials, 2021, 33(16): 6383-6393. [10] 祝晓芸. 纳米碘化亚铜和四氧化三铁的制备及性质研究[D]. 合肥: 合肥工业大学, 2006: 24-26. ZHU X Y. Preparation and properties of nano-cuprous iodide and ferroferric oxide[D].Hefei: Hefei University of Technology, 2006: 24-26.(in Chinese) [11] YANG Y, LIU S M, KIMURA K. A facile chemical solution route to convert bulk cuprous iodide into nanoparticles[J]. Chemistry Letters, 2005, 34(7): 902-903. [12] YANG M, XU J Z, XU S, et al. Preparation of porous spherical CuI nanoparticles[J]. Inorganic Chemistry Communications, 2004, 7(5): 628-630. [13] 刘 飞, 祝 博, 王晓丹, 等. 微乳液法制备六边形薄片状γ-CuI晶体的研究[J]. 材料导报, 2012, 26(10): 5-7+15. LIU F, ZHU B, WANG X D, et al. Study on γ-CuI crystal with hexagon lamellar shape prepared via micro-emulsion[J]. Materials Review, 2012, 26(10): 5-7+15 (in Chinese). [14] 王乐夫, 张美英, 李雪辉, 等. 微化学工程中的微反应技术[J]. 化学反应工程与工艺, 2001, 17(2): 174-179. WANG L F, ZHANG M Y, LI X H, et al. Microreaction technology in microchemical engineering[J]. Chemical Reaction Engineering and Technology, 2001, 17(2): 174-179 (in Chinese). [15] 李少伟, 陈桂光, 骆广生. 膜分散小型反应器制备ZrO2纳米颗粒的实验研究[J]. 过程工程学报, 2004, 4(增刊): 408-412. LI S W, CHEN G G, LUO G S. Preparation of ZrO2 nano-particles with a membrane dispersion mini-reactor[J]. The Chinese Journal of Process Engineering, 2004, 4(supply): 408-412.(in Chinese) [16] 施 瑢, 王玉军, 骆广生. 膜分散微反应器制备纳米ZnO颗粒[J]. 过程工程学报, 2010, 10(S1): 1-6. SHI R, WANG Y J, LUO G S. Preparation of ZnO nanoparticles with membrane dispersion mini-reactor[J]. The Chinese Journal of Process Engineering, 2010, 10(S1): 1-6 (in Chinese). [17] YAO H B, WANG Y J, LUO G S. A size-controllable precipitation method to prepare CeO2 nanoparticles in a membrane dispersion microreactor[J]. Industrial & Engineering Chemistry Research, 2017, 56(17): 4993-4999. [18] TAO S, YANG M, CHEN H H, et al. Continuous synthesis of Ag/AgCl/ZnO composites using flow chemistry and photocatalytic application[J]. Industrial & Engineering Chemistry Research, 2018, 57(9): 3263-3273. [19] 张春玲. 膜分散微结构反应器制备纳米氧化锌及介孔氧化锌微球[D]. 曲阜: 曲阜师范大学, 2011: 27-29. ZHANG C L. Preparation of nano-ZnO and mesoporous ZnO microspheres by membrane dispersion microstructure reactor[D].Qufu: Qufu Normal University, 2011: 27-29.(in Chinese) [20] KLOCHKO N P, BARBASH V A, KLEPIKOVA K S, et al. Highly hydrophobic surfaces with rose petal-effect based on nanocellulose films coated by nanostructured CuI layers[J]. Cellulose, 2021, 28(14): 9395-9412. [21] KUCHIBHATLA S V N T, KARAKOTI A S, BERA D, et al. One dimensional nanostructured materials[J]. Progress in Materials Science, 2007, 52(5): 699-913. [22] SIRIMANNE P M, SENEVIRATHNA M I, PREMALAL E A, et al. Enhancement of the photoproperties of solid-state TiO2|dye|CuI cells by coupling of two dyes[J]. Semiconductor Science and Technology, 2006, 21(6): 818-821. [23] MEZYK S P, TATEISHI M, MACFARLANE R, et al. pKa of the hydrazinium ion and the reaction of hydrogen atoms with hydrazine in aqueous solution[J]. Journal of the Chemical Society, Faraday Transactions, 1996, 92(14): 2541-2545. [24] ZENKOVETS G A, SHUTILOV R A, GAVRILOV V Y. The state of copper ions in aqueous and aqueous ammonia solutions of copper acetate[J]. Russian Journal of Inorganic Chemistry, 2018, 63(11): 1511-1518. |