[1] WANG Q H, KALANTAR-ZADEH K, KIS A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nature Nanotechnology, 2012, 7(11): 699-712. [2] JO S, UBRIG N, BERGER H, et al. Mono- and bilayer WS2 light-emitting transistors[J]. Nano Letters, 2014, 14(4): 2019-2025. [3] OVCHINNIKOV D, ALLAIN A, HUANG Y S, et al. Electrical transport properties of single-layer WS2[J]. ACS Nano, 2014, 8(8): 8174-8181. [4] SOLANKI G K, GUJARATHI D N, DESHPANDE M P, et al. Transport property measurements in tungsten sulphoselenide single crystals grown by a CVT technique[J]. Crystal Research and Technology, 2008, 43(2): 179-185. [5] PISONI A, JACIMOVIC J, GAáL R, et al. Anisotropic transport properties of tungsten disulfide[J]. Scripta Materialia, 2016, 114: 48-50. [6] SINGH V K, PENDURTHI R, NASR J R, et al. Study on the growth parameters and the electrical and optical behaviors of 2D tungsten disulfide[J]. ACS Applied Materials & Interfaces, 2020, 12(14): 16576-16583. [7] JIA Z Y, XIANG J Y, WEN F S, et al. Enhanced photoresponse of SnSe-nanocrystals-decorated WS2 monolayer phototransistor[J]. ACS Applied Materials & Interfaces, 2016, 8(7): 4781-4788. [8] CHOUDHARY N, LI C, CHUNG H S, et al. High-performance one-body core/shell nanowire supercapacitor enabled by conformal growth of capacitive 2D WS2 layers[J]. ACS Nano, 2016, 10(12): 10726-10735. [9] SETHULEKSHMI A S, JAYAN J S, SARITHA A, et al. Insights into the reinforcibility and multifarious role of WS2 in polymer matrix[J]. Journal of Alloys and Compounds, 2021, 876: 160107. [10] AMINI M, AZADEGAN B, AKBARZADEH H, et al. Analysis of MoS2 and WS2 nano-layers role on the radiation resistance of various Cu/MS2/Cu and Cu/MS2@Cu@MS2/Cu nanocomposites[J]. Materialia, 2022, 21: 101281. [11] ABID, SEHRAWAT P, JULIEN C M, et al. E-textile based wearable thermometer from WS2-quantum dots[J]. Nanotechnology, 2021, 32(33): 335503. [12] KRESSE G. Ab initio molecular dynamics for liquid metals[J]. Journal of Non-Crystalline Solids, 1995, 192/193: 222-229. [13] KRESSE G, FURTHMüLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, Condensed Matter, 1996, 54(16): 11169-11186. [14] BLÖCHL P E, JEPSEN O, ANDERSEN O K. Improved tetrahedron method for Brillouin-zone integrations[J]. Physical Review B, 1994, 49(23): 16223-16233. [15] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. [16] BARONI S, DE GIRONCOLI S, DAL CORSO A, et al. Phonons and related crystal properties from density-functional perturbation theory[J]. Reviews of Modern Physics, 2001, 73(2): 515-562. [17] LI W, CARRETE J, KATCHO N A, et al. ShengBTE: a solver of the Boltzmann transport equation for phonons[J]. Computer Physics Communications, 2014, 185(6): 1747-1758. [18] HONG Y, ZHANG J C, ZENG XIAO CHENG. Thermal conductivity of monolayer MoSe2 and MoS2[J]. The Journal of Physical Chemistry C, 2016, 120(45): 26067-26075. [19] PENG B, ZHANG H, SHAO H Z, et al. Towards intrinsic phonon transport in single-layer MoS2[J]. Annalen Der Physik, 2016, 528(6): 504-511. [20] PEIMYOO N, SHANG J Z, YANG W H, et al. Thermal conductivity determination of suspended mono- and bilayer WS2 by Raman spectroscopy[J]. Nano Research, 2015, 8(4): 1210-1221. [21] JIANG P Q, QIAN X, GU X K, et al. Probing anisotropic thermal conductivity of transition metal dichalcogenides MX2 (M=Mo, W and X=S, Se) using time-domain thermoreflectance[J]. Advanced Materials, 2017, 29(36): 1701068. [22] YU Y F, MINHAJ T, HUANG L J, et al. In-plane and interfacial thermal conduction of two-dimensional transition-metal dichalcogenides[J]. Physical Review Applied, 2020, 13(3): 034059. [23] GERTYCH A P, CZERNIAK-ŁOSIEWICZ K, ŁAPIŃSKA A, et al. Phonon and thermal properties of thin films made from WS2 mono- and few-layer flakes[J]. The Journal of Physical Chemistry C, 2021, 125(26): 14446-14452. [24] ZHANG Y F, LV Q, FAN A R, et al. Reduction in thermal conductivity of monolayer WS2 caused by substrate effect[J]. Nano Research, 2022, 15(10): 9578-9587. [25] SANG Y X, GUO J Y, CHEN H, et al. Measurement of thermal conductivity of suspended and supported single-layer WS2 using micro-photoluminescence spectroscopy[J]. The Journal of Physical Chemistry C, 2022, 126(15): 6637-6645. [26] LINDSAY L, BROIDO D A, MINGO N. Flexural phonons and thermal transport in graphene[J]. Physical Review B, 2010, 82(11): 115427. [27] GONZE X, LEE C. Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory[J]. Physical Review B, 1997, 55(16): 10355-10368. [28] FULTZ B. Vibrational thermodynamics of materials[J]. Progress in Materials Science, 2010, 55(4): 247-352. [29] HUANG L F, CAO T F, GONG P L, et al. Isotope effects on the vibrational, Invar, and Elinvar properties of pristine and hydrogenated graphene[J]. Solid State Communications, 2014, 190: 5-9. [30] MOUNET N, MARZARI N. First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives[J]. Physical Review B, 2005, 71(20): 205214. [31] WU X F, VARSHNEY V, LEE J, et al. Hydrogenation of penta-graphene leads to unexpected large improvement in thermal conductivity[J]. Nano Letters, 2016, 16(6): 3925-3935. [32] SCHELLING P K, PHILLPOT S R, KEBLINSKI P. Comparison of atomic-level simulation methods for computing thermal conductivity[J]. Physical Review B, 2002, 65(14): 144306. |