[1] 米 多, 王 涛, 朱 玉. 2017年国内外芳烃供需分析[J]. 化学工业, 2018, 36(3):16-22+41. MI D, WANG T, ZHU Y. Analysis of the supply and demand of aromatics in 2017[J]. Chemical Industry, 2018, 36(3): 16-22+41(in Chinese). [2] 谢晋文, 于国良. 甲苯/二甲苯供需格局变化及市场波折[J]. 中国石油和化工经济分析, 2017(8): 45-49. XIE J W, YU G L. Changes of toluene/xylene supply and demand pattern and market twists and turns[J]. Economic Analysis of China Petroleum and Chemical Industry, 2017(8): 45-49(in Chinese). [3] 禹 华. 国内纯苯生产及其下游产业链发展现状[J]. 合成纤维工业, 2017, 40(4):45-49. YU H. Development situation of pure benzene production and down-stream industrial chain in China[J]. China Synthetic Fiber Industry, 2017, 40(4): 45-49(in Chinese). [4] 吴 倩, 段惠峰, 李佟茗, 等. 菲加氢裂解制BTX的催化剂研究[J]. 燃料化学学报, 2012, 40(8): 996-1001. WU Q, DUAN H F, LI T M, et al. Study on catalysts for phenanthrene hydrocracking to BTX[J]. Journal of Fuel Chemistry and Technology, 2012, 40(8): 996-1001(in Chinese). [5] ARDAKANI S J, LIU X B, SMITH K J. Hydrogenation and ring opening of naphthalene on bulk and supported Mo2C catalysts[J]. Applied Catalysis A: General, 2007, 324: 9-19. [6] CHAREONPANICH M, ZHANG Z G, TOMITA A. Hydrocracking of aromatic hydrocarbons over USY-zeolite[J]. Energy & Fuels, 1996, 10(4): 927-931. [7] 南 毅, 高子祺, 李佳鑫, 等. 催化裂化柴油加氢裂化生产轻质芳烃研究进展[J]. 工业催化, 2022, 30(1): 10-20. NAN Y, GAO Z Q, LI J X, et al. Advances in FCC diesel hydrocracking to light aromatic hydrocarbons[J]. Industrial Catalysis, 2022, 30(1): 10-20(in Chinese). [8] 范景新, 臧甲忠, 于海斌, 等. 劣质催化裂化柴油综合利用技术研究进展[J]. 工业催化, 2016, 24(2): 21-26. FAN J X, ZANG J Z, YU H B, et al. Research advance in comprehensive utilization technologies of inferior FCC diesel oil[J]. Industrial Catalysis, 2016, 24(2): 21-26(in Chinese). [9] KOSTYNIUK A, BAJEC D, LIKOZAR B. Catalytic hydrocracking reactions of tetralin as aromatic biomass tar model compound to benzene/toluene/xylenes (BTX) over zeolites under ambient pressure conditions[J]. Journal of Industrial and Engineering Chemistry, 2021, 96: 130-143. [10] KOSTYNIUK A, BAJEC D, LIKOZAR B. Catalytic hydrocracking reactions of tetralin biomass tar model compound to benzene, toluene and xylenes (BTX) over metal-modified ZSM-5 in ambient pressure reactor[J]. Renewable Energy, 2022, 188: 240-255. [11] LEE J, CHOI Y, SHIN J, et al. Selective hydrocracking of tetralin for light aromatic hydrocarbons[J]. Catalysis Today, 2016, 265: 144-153. [12] XIAN X C, RAN C, YANG P, et al. Effect of the acidity of HZSM-5/MCM-41 hierarchical zeolite on its catalytic performance in supercritical catalytic cracking of n-dodecane: experiments and mechanism[J]. Catalysis Science & Technology, 2018, 8(16): 4241-4256. [13] NIU X J, GAO J, MIAO Q, et al. Influence of preparation method on the performance of Zn-containing HZSM-5 catalysts in methanol-to-aromatics[J]. Microporous and Mesoporous Materials, 2014, 197: 252-261. [14] 王恒强, 张成华, 吴宝山, 等. Ga、Zn改性方法对HZSM-5催化剂丙烯芳构化性能的影响[J]. 燃料化学学报, 2010, 38(5): 576-581. WANG H Q, ZHANG C H, WU B S, et al. Effect of Ga and Zn modification on propylene aromatization over HZSM-5 catalysts[J]. Journal of Fuel Chemistry and Technology, 2010, 38(5): 576-581(in Chinese). [15] ZHANG C D, KWAK G, LEE Y J, et al. Light hydrocarbons to BTEX aromatics over Zn-modified hierarchical ZSM-5 combined with enhanced catalytic activity and stability[J]. Microporous and Mesoporous Materials, 2019, 284: 316-326. [16] ZHANG Y W, ZHOU Y M, HUANG L, et al. Structure and catalytic properties of the Zn-modified ZSM-5 supported platinum catalyst for propane dehydrogenation[J]. Chemical Engineering Journal, 2015, 270: 352-361. [17] JING H J, YANG F K, XIA Y M, et al. A study on the selectivity of methanol aromatization[J]. Petroleum Science and Technology, 2012, 30(16): 1737-1746. [18] 贾艳明, 马 慧, 王俊文, 等. 金属改性HZSM-5分子筛催化甲醇制芳烃反应性能研究[J]. 天然气化工, 2019, 44(3): 7-11+26. JIA Y M, MA H, WANG J W, et al. Conversion of methanol to aromatics over metal-modified HZSM-5 zeolites[J]. Natural Gas Chemical Industry, 2019, 44(3): 7-11+26(in Chinese). [19] SHEN Z B, HE P, WANG A G, et al. Conversion of naphthalene as model compound of polyaromatics to mono-aromatic hydrocarbons under the mixed hydrogen and methane atmosphere[J]. Fuel, 2019, 243: 469-477. [20] 安志远, 朱 超, 刘熠斌, 等. Zn/HZSM-5分子筛催化棕榈油多产芳烃的研究[J]. 化工学报, 2019, 70(11): 4289-4297. AN Z Y, ZHU C, LIU Y B, et al. Catalytic conversion of palm oil to aromatics on Zn/HZSM-5 zeolites[J]. CIESC Journal, 2019, 70(11): 4289-4297(in Chinese). [21] 张长城. 改性β分子筛的制备及其催化1-甲基萘加氢裂化制BTX性能[D]. 北京: 中国石油大学(北京), 2020: 40-42. ZHANG C C. Preparation of modified β zeolite and its catalytic performance in hydrocracking of 1-methylnaphthalene to BTX[D]. Beijing: China University of Petroleum (Beijing), 2020: 40-42(in Chinese). [22] WU T, CHEN S L, YUAN G M, et al. High-selective-hydrogenation activity of W/Beta catalyst in hydrocracking of 1-methylnaphalene to benzene, toluene and xylene[J]. Fuel, 2018, 234: 1015-1025. [23] 杜佳楠. 1-甲基萘高温加氢裂化制备BTX催化剂活性组分的调变[D]. 北京: 中国石油大学(北京), 2020: 40-43. DU J N. Modulation of active components of catalyst for hydrocracking of 1-methylnaphthalene to BTX in high temperature system[D]. Beijing: China University of Petroleum (Beijing), 2020: 40-43(in Chinese). [24] LEE S U, LEE Y J, KIM J R, et al. Tactical control of Ni-loading over W-supported Beta zeolite catalyst for selective ring opening of 1-methylnaphthalene[J]. Journal of Industrial and Engineering Chemistry, 2018, 66: 279-287. [25] 忻睦迪, 邢恩会, 欧阳颖, 等. Zn/ZSM-5中Zn的赋存状态对其催化性能的影响[J]. 石油炼制与化工, 2019, 50(12): 42-50. XIN M D, XING E H, OUYANG Y, et al. Influence of status of zn species in Zn/ZSM-5 on its catalytic performance[J]. Petroleum Processing and Petrochemicals, 2019, 50(12): 42-50(in Chinese). [26] 吴 韬. 催化裂化轻循环油加氢裂化反应规律研究及催化剂制备[D]. 北京: 中国石油大学(北京), 2020: 48-49. WU T. The reaction mechanism of hydrocracking of light cyclic oil and synthesis of hydrocracking catalyst[D]. Beijing: China University of Petroleum (Beijing), 2020: 48-49(in Chinese). [27] CAO Z K, ZHANG X, XU C M, et al. The synthesis of Al-SBA-16 materials with a novel method and their catalytic application on hydrogenation for FCC diesel[J]. Energy & Fuels, 2017, 31(1): 805-814. [28] LEE S U, LEE Y J, KIM J R, et al. Rational synthesis of silylated Beta zeolites and selective ring opening of 1-methylnaphthalene over the NiW-supported catalysts[J]. Applied Catalysis B: Environmental, 2017, 219: 1-9. [29] EBRAHIMINEJAD M, KARIMZADEH R. Hydrocracking and hydrodesulfurization of diesel over zeolite beta-containing NiMo supported on activated red mud[J]. Advanced Powder Technology, 2019, 30(8): 1450-1461. [30] DIK P P, DANILOVA I G, GOLUBEV I S, et al. Hydrocracking of vacuum gas oil over NiMo/zeolite-Al2O3: Influence of zeolite properties[J]. Fuel, 2019, 237: 178-190. [31] SUBRAMANI T, THIMMARAYAN G, BALRAJ B, et al. Surfactants assisted synthesis of WO3 nanoparticles with improved photocatalytic and antibacterial activity: a strong impact of morphology[J]. Inorganic Chemistry Communications, 2022, 142: 109709. [32] LIU N, DING S L, CUI Y M, et al. Optimizing activity of tungsten oxides for 1-butene metathesis by depositing silica on γ-alumina support[J]. Chemical Engineering Research and Design, 2013, 91(3): 573-580. [33] ANGGORO D D, AMIN N A S. Methane to liquid hydrocarbons over tungsten-ZSM-5 and tungsten loaded Cu/ZSM-5 catalysts[J]. Journal of Natural Gas Chemistry, 2006, 15(4): 340-347. [34] LIU J X, HE D H. Transformation of CO2 with glycerol to glycerol carbonate by a novel ZnWO4-ZnO catalyst[J]. Journal of CO2 Utilization, 2018, 26: 370-379. |