[1] 张 方, 冯潇炜, 曹新生, 等. 飞机噪声对不同岗位机务人员听力的影响[J]. 空军医学杂志, 2013, 29(3): 129-131. ZHANG F, FENG X W, CAO X S, et al. Effect of aircraft noise on hearing of ground crew with different positions[J]. Medical Journal of Air Force, 2013, 29(3): 129-131 (in Chinese). [2] FAIYETOLE A A, SIVOWAKU J T. The effects of aircraft noise on psychosocial health[J]. Journal of Transport & Health, 2021, 22: 101230. [3] 刘碧龙, 常道庆, 王晓林, 等. 飞机座舱声学控制方法报告[J]. 科技资讯, 2016, 14(16): 179-180. LIU B L, CHANG D Q, WANG X L, et al. Study on the aircraft interior noise control[J]. Science & Technology Information, 2016, 14(16): 179-180 (in Chinese). [4] 孙亚飞, 陈仁文, 徐志伟, 等. 应用微穿孔板吸声结构的飞机座舱内部噪声控制实验研究[J]. 声学学报, 2003, 28(4): 294-298. SUN Y F, CHEN R W, XU Z W, et al. Experimental research of noise control in the fighter cockpit using microperforated panel absorber structure[J]. Acta Acustica, 2003, 28(4): 294-298 (in Chinese). [5] SONG Y H, SHEN Y F. A tunable phononic crystal system for elastic ultrasonic wave control[J]. Applied Physics Letters, 2021, 118(22): 224104. [6] WU X D, SUN L Z, ZUO S G, et al. Vibration reduction of car body based on 2D dual-base locally resonant phononic crystal[J]. Applied Acoustics, 2019, 151: 1-9. [7] XU G G, SUN X W, LI R S, et al. The low-frequency bandgap characteristics of a new three-dimensional multihole phononic crystal[J]. Applied Physics A, 2021, 127(11): 812. [8] HAN D H, ZHAO J B, ZHANG G J, et al. Study on low-frequency band gap characteristics of a new Helmholtz type phononic crystal[J]. Symmetry, 2021, 13(8): 1379. [9] 张佳龙, 姚 宏, 杜 军, 等. 基于局域共振型声子晶体在机舱内低频隔声特性[J]. 硅酸盐学报, 2016, 44(10): 1440-1445. ZHANG J L, YAO H, DU J, et al. Low frequency sound insulation characteristics of the locally resonant phononic crystals in the large aircraft cabin[J]. Journal of the Chinese Ceramic Society, 2016, 44(10): 1440-1445 (in Chinese). [10] 温熙森, 温激泓, 郁殿龙. 声子晶体[M]. 北京: 国防工业出版社, 2009. WEN X S, WEN J H, YU D L. Phononic crystal[M]. Beijing: National Defense Industry Press, 2009 (in Chinese). [11] 张荣英, 姜根山, 王璋奇, 等. 声子晶体的研究进展及应用前景[J]. 声学技术, 2006, 25(1): 35-42. ZHANG R Y, JIANG G S, WANG Z Q, et al. Progress in researches of phononic crystal and the application perspectives[J]. Technical Acoustics, 2006, 25(1): 35-42 (in Chinese). [12] 韩东海, 张广军, 赵静波, 等. 新型Helmholtz型声子晶体的低频带隙及隔声特性[J]. 物理学报, 2022, 71(11): 114301. HAN D H, ZHANG G J, ZHAO J B, et al. Low-frequency bandgaps and sound isolation characteristics of a novel Helmholtz-type phononic crystal[J]. Acta Physica Sinica, 2022, 71(11): 114301 (in Chinese). [13] 温激鸿, 王 刚, 刘耀宗, 等. 基于集中质量法的一维声子晶体弹性波带隙计算[J]. 物理学报, 2004, 53(10): 3384-3388. WEN J H, WANG G, LIU Y Z, et al. Lumped-mass method on calculation of elastic band gaps of one-dimensional phononic crystals[J]. Acta Physica Sinica, 2004, 53(10): 3384-3388 (in Chinese). [14] WANG G, WEN X S, WEN J H, et al. Two-dimensional locally resonant phononic crystals with binary structures[J]. Physical Review Letters, 2004, 93(15): 154302. [15] 董亚科, 杜 军, 姚 宏, 等. 双包覆层局域共振型声子晶体带隙特性研究[J]. 人工晶体学报, 2015, 44(12): 3676-3680. DONG Y K, DU J, YAO H, et al. Study on band gap characteristics of phononic crystal composed by double coated layer[J]. Journal of Synthetic Crystals, 2015, 44(12): 3676-3680 (in Chinese). [16] 吴 健, 白晓春, 肖 勇, 等. 一种多频局域共振型声子晶体板的低频带隙与减振特性[J]. 物理学报, 2016, 65(6): 064602. WU J, BAI X C, XIAO Y, et al. Low frequency band gaps and vibration reduction properties of a multi-frequency locally resonant phononic plate[J]. Acta Physica Sinica, 2016, 65(6): 064602 (in Chinese). [17] MAHESH K, MINI R S. Investigation on the acoustic performance of multiple Helmholtz resonator configurations[J]. Acoustics Australia, 2021, 49(2): 355-369. [18] 贺子厚, 赵静波, 姚 宏, 等. 薄膜底面Helmholtz腔声学超材料的隔声性能[J]. 物理学报, 2019, 68(21): 214302. HE Z H, ZHAO J B, YAO H, et al. Sound insulation performance of Helmholtz cavity with thin film bottom[J]. Acta Physica Sinica, 2019, 68(21): 214302 (in Chinese). [19] DUAN H Q, SHEN X M, WANG E S, et al. Acoustic multi-layer Helmholtz resonance metamaterials with multiple adjustable absorption peaks[J]. Applied Physics Letters, 2021, 118(24): 241904. [20] 陈 鑫, 姚 宏, 赵静波, 等. Helmholtz腔与弹性振子耦合结构带隙[J]. 物理学报, 2019, 68(8): 084302. CHEN X, YAO H, ZHAO J B, et al. Band gap of structure coupling Helmholtz resonator with elastic oscillator[J]. Acta Physica Sinica, 2019, 68(8): 084302 (in Chinese). [21] GAO N S, WU J H, YU L. Large band gaps in two-dimensional phononic crystals with self-similarity structure[J]. International Journal of Modern Physics B, 2015, 29(4): 1550017. [22] GAO N S, WU J H, JING L. Research on the band gaps of the two-dimensional Sierpinski fractal phononic crystals[J]. Modern Physics Letters B, 2015, 29(23): 1550134. [23] GAO N S, WU J H, YU L. Research on bandgaps in two-dimensional phononic crystal with two resonators[J]. Ultrasonics, 2015, 56: 287-293. [24] DUAN M Y, YU C L, XIN F X, et al. Tunable underwater acoustic metamaterials via quasi-Helmholtz resonance: from low-frequency to ultra-broadband[J]. Applied Physics Letters, 2021, 118(7): 071904. [25] RAJENDRAN V, MÉNDEZ ECHENAGUCIA T I, PIACSEK A A. Design of efficient low-frequency sound absorbers using an array of Helmholtz Resonators[J]. The Journal of the Acoustical Society of America, 2020, 148(4): 2798-2799. |