[1] ZHOU T, CHENG Q Y, ZHANG L, et al. Ferrocene-functionalized core-shell lanthanide-doped upconversion nanoparticles: NIR light promoted chemodynamic therapy and luminescence imaging of solid tumors[J]. Chemical Engineering Journal, 2022, 438: 135637. [2] ANSARI A A, PARCHUR A K, THORAT N D, et al. New advances in pre-clinical diagnostic imaging perspectives of functionalized upconversion nanoparticle-based nanomedicine[J]. Coordination Chemistry Reviews, 2021, 440: 213971. [3] CAO C, LI G S, XIE Y, et al. Er3+ doped core-shell nanoparticles with large enhanced near-infrared luminescence for in vivo imaging[J]. Inorganic Chemistry Communications, 2021, 126: 108468. [4] YAO Y, XIE G M, ZHANG X, et al. Fast detection of E. coli with a novel fluorescent biosensor based on a FRET system between UCNPs and GO@Fe3O4 in urine specimens[J]. Analytical Methods: Advancing Methods and Applications, 2021, 13(19): 2209-2214. [5] REN J, DING Y D, ZHU H C, et al. Emitter-active shell in NaYF4:Yb, Er/NaYF4:Er upconversion nanoparticles for enhanced energy transfer in photodynamic therapy[J]. ACS Applied Nano Materials, 2022, 5(1): 559-568. [6] WANG Y B, LI H Y, MA H, et al. Colour modulation and enhancement of upconversion emissions in K2NaScF6:Yb/Ln (Ln= Er, Ho, Tm) nanocrystals[J]. Journal of Rare Earths, 2021, 39(12): 1477-1483. [7] JIA H, ZHANG X, FENG Z Y, et al. Y2O3:Eu3+ @SiO2 nanocomposites as a convertor for a broadband solar-blind UV photodetector[J]. Journal of the American Ceramic Society, 2022, 105(8): 5252-5261. [8] 张 娜, 李 阳, 尹延如, 等. Dy3+掺杂Lu2O3和Y2O3单晶光纤下转换荧光测温性能[J]. 发光学报, 2022, 43(2): 182-191. ZHANG N, LI Y, YIN Y R, et al. Down-conversion luminescence performance of Dy3+ doped Lu2O3 and Y2O3 single crystal fibers for temperature sensing[J]. Chinese Journal of Luminescence, 2022, 43(2): 182-191 (in Chinese). [9] ZHOU L J, GU Z J, LIU X X, et al. Size-tunable synthesis of lanthanide-doped Gd2O3nanoparticles and their applications for optical and magnetic resonance imaging[J]. Journal of Materials Chemistry, 2012, 22(3): 966-974. [10] GŁUCHOWSKI P, MARCINIAK Ł, LASTUSAARI M, et al. Key factors tuning upconversion and near infrared luminescence in nanosized Lu2O3:Er3+, Yb3+[J]. Journal of Alloys and Compounds, 2019, 799: 481-494. [11] XU B X, SONG C, HUANG R, et al. Luminescence properties related to energy transfer process and cross relaxation process of Y2O3:Yb3+/Er3+ thin films doped with K+ ion[J]. Optical Materials, 2021, 118: 111290. [12] 赵小奇. 稀土掺杂氧化物上转换微/纳米晶的可控合成及光谱调控[D]. 西安: 西北大学, 2018. ZHAO X Q. The controlled synthesis and spectral modulation of rare-earth doped oxide up-conversion micro/nanocrystals[D]. Xi'an: Northwest University, 2018 (in Chinese). [13] PYNGROPE D, ROBINDRO SINGH L, PRASAD A I. Structural and photoluminescence studies of Gd2O3 doped with Ln3+ (Ln=Eu/Tb) and sensitised with Li+/Bi3+[J]. Materials Today: Proceedings, 2022, 56: 1010-1023. [14] LI D G, QIN W P, ZHANG P, et al. Efficient luminescence enhancement of Gd2O3:Ln3+ (Ln=Yb/Er, Eu) NCs by codoping Zn2+ and Li+ inert ions[J]. Optical Materials Express, 2017, 7(2): 329-340. [15] LIU H, HE X, JIA H, et al. Investigation on the efficient up-conversion luminescence and temperature sensing properties of the Li+/Er3+/Yb3+:Gd2O3 phosphor[J]. Optik, 2021, 228: 166155. [16] ZHOU Y Y, LING B, CHEN H Q, et al. Mn2+-doped NaYF4:Yb, Er upconversion nanoparticles for detection of uric acid based on the Fenton reaction[J]. Talanta, 2018, 180: 120-126. [17] 李雅楠, 吕光哲, 刘旭升, 等. 微纳Gd2O3粉体的水热法制备过程研究[J]. 辽宁科技学院学报, 2021, 23(4): 4-7. LI Y N, LV G Z, LIU X S, et al. A study on the hydrothermal synthesis process of micro/nano Gd2O3 powders[J]. Journal of Liaoning Institute of Science and Technology, 2021, 23(4): 4-7 (in Chinese). [18] YANG G X, LV R C, GAI S L, et al. Multifunctional SiO2@Gd2O3:Yb/Tm hollow capsules: controllable synthesis and drug release properties[J]. Inorganic Chemistry, 2014, 53(20): 10917-10927. [19] 陈 杰, 姜海峰, 高忆欣, 等. SiO2@Gd2O3:Tb3+核壳微球的可控合成及发光性能研究[J]. 人工晶体学报, 2020, 49(7): 1201-1207. CHEN J, JIANG H F, GAO Y X, et al. Controllable synthesis and luminescent properties of SiO2@Gd2O3:Tb3+ core-shell microspheres[J]. Journal of Synthetic Crystals, 2020, 49(7): 1201-1207 (in Chinese). [20] HU C L, LEI L, LIU E Y, et al. Improved negative thermal quenching effect of Yb/Er codoped fluoride upconversion nanocrystals via engineering phonon energy[J]. Journal of Luminescence, 2022, 247: 118905. [21] GUO Y, XIE J H, YU M X, et al. The enhanced up-conversion green by Yb-Mn dimer in NaBiF4:Yb3+/Er3+/Mn2+ for optical fiber temperature sensor[J]. Journal of Alloys and Compounds, 2021, 888: 161497. [22] ZHANG X J, GAO R Y, WANG Z J, et al. Effect of excitation mode on the upconversion luminescence of β-NaYF4:Yb/Er nanocrystals[J]. Chemical Physics Letters, 2021, 779: 138880. [23] 苏 越, 雷朋朋, 冯 婧, 等. Mn2+掺杂NaBiF4:Yb/Er体系的可调控上转换发光[J]. 高等学校化学学报, 2017, 38(12): 2135-2143. SU Y, LEI P P, FENG J, et al. Tunable upconversion luminescence of Mn2+ doping NaBiF4:Yb/Er particles[J]. Chemical Journal of Chinese Universities, 2017, 38(12): 2135-2143 (in Chinese). [24] XIANG G T, LIU X T, XIA Q, et al. Design of a bi-functional NaScF4:Yb3+/Er3+ nanoparticles for deep-tissue bioimaging and optical thermometry through Mn2+ doping[J]. Talanta, 2021, 224: 121832. [25] YANG H J, LI X B, ZHANG R R, et al. Preparation and properties of Nd3+ doped Gd2O3 near-infrared phosphor[J]. Ceramics International, 2021, 47(6): 8510-8517. |