[1] CHANDRATRE S, SHARMA P. Coaxing graphene to be piezoelectric[J]. Applied Physics Letters, 2012, 100(2): 023114. [2] ONG M T, REED E J. Engineered piezoelectricity in graphene[J]. ACS Nano, 2012, 6(2): 1387-1394. [3] ATACA C, ŞAHIN H, CIRACI S. Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure[J]. The Journal of Physical Chemistry C, 2012, 116(16): 8983-8999. [4] DUERLOO K N, ONG M T, REED E J. Intrinsic piezoelectricity in two-dimensional materials[J]. The Journal of Physical Chemistry Letters, 2012, 3(19): 2871-2876. [5] ZHU D R, WU Y, ZHANG H N, et al. New direction’s piezoelectricity and new applications of two-dimensional group V-IV-III-VI films: a theoretical study[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 124: 114214. [6] MORTAZAVI B, JAVVAJI B, SHOJAEI F, et al. Exceptional piezoelectricity, high thermal conductivity and stiffness and promising photocatalysis in two-dimensional MoSi2N4 family confirmed by first-principles[J]. Nano Energy, 2021, 82: 105716. [7] HINCHET R, KHAN U, FALCONI C, et al. Piezoelectric properties in two-dimensional materials: simulations and experiments[J]. Materials Today, 2018, 21(6): 611-630. [8] 王 盼, 宗易昕, 文宏玉, 等. 二维Janus原子晶体的电子性质[J]. 物理学报, 2021, 70(2): 026801. WANG P, ZONG Y X, WEN H Y, et al. Electronic properties of two-dimensional Janus atomic crystal[J]. Acta Physica Sinica, 2021, 70(2): 026801 (in Chinese). [9] NOOR-A-ALAM M, KIM H J, SHIN Y H. Hydrogen and fluorine co-decorated silicene: a first principles study of piezoelectric properties[J]. Journal of Applied Physics, 2015, 117(22): 224304. [10] GAO R L, GAO Y Y. Piezoelectricity in two-dimensional group III-V buckled honeycomb monolayers[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2017, 11(3): 1600412. [11] HUANG L, WU F G, LI J B. Structural anisotropy results in strain-tunable electronic and optical properties in monolayer GeX and SnX (X=S, Se, Te)[J]. The Journal of Chemical Physics, 2016, 144(11): 114708. [12] JI Y J, YANG M Y, DONG H L, et al. Two-dimensional germanium monochalcogenide photocatalyst for water splitting under ultraviolet, visible to near-infrared light[J]. Nanoscale, 2017, 9(25): 8608-8615. [13] MICHEL K H, ÇAKıR D, SEVIK C, et al. Piezoelectricity in two-dimensional materials: comparative study between lattice dynamics and ab initio calculations[J]. Physical Review B, 2017, 95(12): 125415. [14] WU W Z, WANG L, LI Y L, et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics[J]. Nature, 2014, 514(7523): 470-474. [15] ALYÖRÜK M M, AIERKEN Y, ÇAKıR D, et al. Promising piezoelectric performance of single layer transition-metal dichalcogenides and dioxides[J]. The Journal of Physical Chemistry C, 2015, 119(40): 23231-23237. [16] ZHU H Y, WANG Y, XIAO J, et al. Observation of piezoelectricity in free-standing monolayer MoS2[J]. Nature Nanotechnology, 2015, 10(2): 151-155. [17] ZHUANG H L, JOHANNES M D, BLONSKY M N, et al. Computational prediction and characterization of single-layer CrS2[J]. Applied Physics Letters, 2014, 104(2): 022116. [18] LU A Y, ZHU H Y, XIAO J, et al. Janus monolayers of transition metal dichalcogenides[J]. Nature Nanotechnology, 2017, 12(8): 744-749. [19] DONG L, LOU J, SHENOY V B. Large In-plane and vertical piezoelectricity in Janus transition metal dichalchogenides[J]. ACS Nano, 2017, 11(8): 8242-8248. [20] GUO S D, GUO X S, HAN R Y, et al. Predicted Janus SnSSe monolayer: a comprehensive first-principles study[J]. Physical Chemistry Chemical Physics, 2019, 21(44): 24620-24628. [21] YANG J H, WANG A P, ZHANG S Z, et al. Coexistence of piezoelectricity and magnetism in two-dimensional vanadium dichalcogenides[J]. Physical Chemistry Chemical Physics, 2019, 21(1): 132-136. [22] DIMPLE, JENA N, RAWAT A, et al. Emergence of high piezoelectricity along with robust electron mobility in Janus structures in semiconducting Group IVB dichalcogenide monolayers[J]. Journal of Materials Chemistry A, 2018, 6(48): 24885-24898. [23] KAHRAMAN Z, KANDEMIR A, YAGMURCUKARDES M, et al. Single-layer Janus-type platinum dichalcogenides and their heterostructures[J]. The Journal of Physical Chemistry C, 2019, 123(7): 4549-4557. [24] WANG J J, REHMAN S U, TARIQ Z, et al. Pristine and Janus chromium dichalcogenides: potential photocatalysts for overall water splitting in wide solar spectrum under strain and electric field[J]. Solar Energy Materials and Solar Cells, 2021, 230: 111258. [25] LIU X Q, KANG W, ZHAO J H, et al. Intrinsic electric field and excellent photocatalytic solar-to-hydrogen efficiency in 2D Janus transition metal dichalcogenide[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2022, 16(3): 2100417. [26] ZHAO P, LIANG Y, MA Y D, et al. Janus chromium dichalcogenide monolayers with low carrier recombination for photocatalytic overall water-splitting under infrared light[J]. The Journal of Physical Chemistry C, 2019, 123(7): 4186-4192. [27] PHUNG Q M, HAGAI M, XIONG X G, et al. Polarization consistent basis sets using the projector augmented wave method: a renovation brought by PAW into Gaussian basis sets[J]. Physical Chemistry Chemical Physics, 2020, 22(46): 27037-27052. [28] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. [29] WU X F, VANDERBILT D, HAMANN D R. Systematic treatment of displacements, strains, and electric fields in density-functional perturbation theory[J]. Physical Review B, 2005, 72(3): 035105. [30] MOUHAT F, COUDERT F X. Necessary and sufficient elastic stability conditions in various crystal systems[J]. Physical Review B, 2014, 90(22): 224104. [31] KING-SMITH R D, VANDERBILT D. Theory of polarization of crystalline solids[J]. Physical Review B, Condensed Matter, 1993, 47(3): 1651-1654. [32] RESTA R. Modern theory of polarization in ferroelectrics[J]. Ferroelectrics, 1994, 151(1): 49-58. [33] RESTA R. Polarization in Kohn-Sham density-functional theory[J]. The European Physical Journal B, 2018, 91(6): 100. [34] BLONSKY M N, ZHUANG H L, SINGH A K, et al. Ab initio prediction of piezoelectricity in two-dimensional materials[J]. ACS Nano, 2015, 9(10): 9885-9891. [35] GUO S D, GUO X S, ZHANG Y Y, et al. Small strain induced large piezoelectric coefficient in α-AsP monolayer[J]. Journal of Alloys and Compounds, 2020, 822: 153577. |