[1] PAN H, LI F, LIU Y, et al. Ultrahigh-energy density lead-free dielectric films via polymorphic nanodomain design[J]. Science, 2019, 365(6453): 578-582. [2] ZHAO Y N, PENG R C, GUO Y T, et al. Multiferroic heterostructures: ultraflexible and malleable Fe/BaTiO3 multiferroic heterostructures for functional devices[J]. Advanced Functional Materials, 2021, 31(16): 2170111. [3] GU W H, SHENG J Q, HUANG Q Q, et al. Environmentally friendly and multifunctional shaddock peel-based carbon aerogel for thermal-insulation and microwave absorption[J]. Nano-Micro Letters, 2021, 13(1): 102. [4] WANG J, NEATON J B, ZHENG H, et al. Epitaxial BiFeO3 multiferroic thin film heterostructures[J]. Science, 2003, 299(5613): 1719-1722. [5] CATALAN G, SCOTT J F. Physics and applications of bismuth ferrite[J]. Advanced Materials, 2009, 21(24): 2463-2485. [6] YANG B B, JIN L H, WEI R H, et al. Chemical solution route for high-quality multiferroic BiFeO3 thin films[J]. Small, 2021, 17(9): 1903663. [7] LI K X, ZHANG W Y, GUO K X, et al. Modulating light absorption and multiferroic properties of BiFeO3-based ferroelectric films by the introduction of ZnO layer[J]. Materials Research Express, 2022, 9(3): 036402. [8] ZHANG R Q, HU P J, BAI L L, et al. New multiferroic BiFeO3 with large polarization[J]. Physical Chemistry Chemical Physics, 2022, 24(10): 5939-5945. [9] WANG W G, LI M G, HAGEMAN S, et al. Electric-field-assisted switching in magnetic tunnel junctions[J]. Nature Materials, 2012, 11(1): 64-68. [10] ROJAC T, BENCAN A, MALIC B, et al. BiFeO3 ceramics: processing, electrical, and electromechanical properties[J]. Journal of the American Ceramic Society, 2014, 97(7): 1993-2011. [11] YIN L, MI W B. Progress in BiFeO3-based heterostructures: materials, properties and applications[J]. Nanoscale, 2020, 12(2): 477-523. [12] WANG G, LU Z L, YANG H J, et al. Fatigue resistant lead-free multilayer ceramic capacitors with ultrahigh energy density[J]. Journal of Materials Chemistry A, 2020, 8(22): 11414-11423. [13] LU Z L, WANG G, BAO W C, et al. Superior energy density through tailored dopant strategies in multilayer ceramic capacitors[J]. Energy & Environmental Science, 2020, 13(9): 2938-2948. [14] YANG S, MA G B, XU L, et al. Improved ferroelectric properties and band-gap tuning in BiFeO3 films via substitution of Mn[J]. RSC Advances, 2019, 9(50): 29238-29245. [15] MURAKAMI S, AHMED N T A F, WANG D W, et al. Optimising dopants and properties in BiMeO3 (Me = Al, Ga, Sc, Y, Mg2/3Nb1/3, Zn2/3Nb1/3, Zn1/2Ti1/2) lead-free BaTiO3-BiFeO3 based ceramics for actuator applications[J]. Journal of the European Ceramic Society, 2018, 38(12): 4220-4231. [16] QIU C C, ZHANG Y Y, LV X S, et al. The enhanced dielectric and ferroelectric properties of La-Ti codoped BiFeO3 based thin films on ITO/glass substrates[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(8): 6394-6397. [17] LONG L L, GUO K X, HUANG J H, et al. Regulation of multiferroicity in BiFe1-xCrxO3 thin films fabricated employing sol-gel process[J]. Journal of Materials Science: Materials in Electronics, 2022, 33(14): 11308-11317. [18] GUO K X, WANG X, ZHANG R F, et al. Multiferroic oxide BFCNT/BFCO heterojunction black silicon photovoltaic devices[J]. Light: Science & Applications, 2021, 10(1): 1-8. [19] GUO K X, ZHANG R F, FU Z, et al. Mutual regulation of polarization and magnetization in BFCNT/BFCO heterostructure via stress analysis of dipoles[J]. Ceramics International, 2021, 47(14): 20422-20427. [20] SHARIF M K, KHAN M A, JUNAID M, et al. Enhanced magnetic and ferroelectric properties of K-Hf substituted BiFeO3 multiferroics for magnetoelectric data storage applications[J]. Ferroelectrics, 2022, 599(1): 168-177. [21] POPE C G. X-ray diffraction and the Bragg equation[J]. Journal of Chemical Education, 1997, 74(1): 129. [22] PATTERSON A L. The scherrer formula for X-ray particle size determination[J]. Physical Review, 1939, 56(10): 978-982. [23] YUE Z W, TAN G Q, YANG W, et al. Enhanced multiferroic properties in Pr-doped BiFe0.97Mn0.03O3 films[J]. Ceramics International, 2016, 42(16): 18692-18699. [24] ZHANG C C, DAI J Q, LIANG X L. Enhanced ferroelectric properties of (Zn, Ti) equivalent co-doped BiFeO3 films prepared via the sol-gel method[J]. Ceramics International, 2021, 47(12): 16776-16785. [25] YANG S J, ZHANG F Q, XIE X B, et al. Enhanced leakage and ferroelectric properties of Zn-doped BiFeO3 thin films grown by sol-gel method[J]. Journal of Alloys and Compounds, 2018, 734: 243-249. [26] SUN W, ZHOU Z, LUO J, et al. Leakage current characteristics and Sm/Ti doping effect in BiFeO3 thin films on silicon wafers[J]. Journal of Applied Physics, 2017, 121(6): 064101. [27] 杨 松, 郭凯鑫, 张 敏, 等. La掺杂BiFeO3薄膜铁电及光学性能研究[J]. 人工晶体学报, 2019, 48(8): 1445-1450+1456. YANG S, GUO K X, ZHANG M, et al. Study on ferroelectric and optical properties of La-doped BiFeO3 films[J]. Journal of Synthetic Crystals, 2019, 48(8): 1445-1450+1456 (in Chinese). [28] DONG G H, TAN G Q, LIU W L, et al. Crystal structure and highly enhanced ferroelectric properties of (Tb, Cr) co-doped BiFeO3 thin films fabricated by a sol-gel method[J]. Ceramics International, 2014, 40(1): 1919-1925. [29] NAGANUMA H, INOUE Y, OKAMURA S. Evaluation of electrical properties of leaky BiFeO3 films in high electric field region by high-speed positive-up-negative-down measurement[J]. Applied Physics Express, 2008, 1: 061601. [30] CHAI Z J, TAN G Q, YUE Z W, et al. Ferroelectric properties of BiFeO3 thin films by Sr/Gd/Mn/Co multi-doping[J]. Journal of Alloys and Compounds, 2018, 746: 677-687. [31] LIU J, DENG H M, ZHAI X Z, et al. Influence of Zn doping on structural, optical and magnetic properties of BiFeO3 films fabricated by the sol-gel technique[J]. Materials Letters, 2014, 133: 49-52. |