[1] BOATNER L A, COMER E P, WRIGHT G W, et al. Improved Lithium Iodide neutron scintillator with Eu2+ activation Ⅱ: activator zoning and concentration effects in Bridgman-grown crystals[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 903: 8-17. [2] TANG M J, YU Q, HUANG C, et al. Study of a position-sensitive scintillator neutron detector prototype based on 6LiF/ZnS scintillator and silicon photomultiplier arrays readout[J]. The Review of Scientific Instruments, 2022, 93(3): 033305. [3] OSHIMA Y, YASUMUNE T, MASUDA T, et al. Temperature dependence of Li-glass scintillator response to neutrons[J]. Progress in Nuclear Science and Technology, 2011, 1: 296-299. [4] 杨 帆. 中子探测晶体铈掺杂硼酸钆锂的生长与性能研究[D]. 上海: 中国科学院上海硅酸盐研究所, 2010. YANG F. Research on the crystal growth and neutron detection properties of Ce-doped lithium gadolinium borate single crystals[D]. Shanghai:Shanghai Institute of Ceramics, Chinese Academy of Science, 2010. [5] CIEŚLAK M, GAMAGE K, GLOVER R. Critical review of scintillating crystals for neutron detection[J]. Crystals, 2019, 9(9): 480. [6] YANAGIDA T. Study of rare-earth-doped scintillators[J]. Optical Materials, 2013, 35(11): 1987-1992. [7] VAN EIJK C W E. Inorganic scintillators for thermal neutron detection[J]. Radiation Measurements, 2004, 38(4/5/6): 337-342. [8] NAGARKAR V V, OVECHKINA E, BHANDARI H, et al. Lithium alkali halides-New thermal neutron detectors with n-γ discrimination[C]//2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC). October 27-November 2, 2013, Seoul, Korea (South). IEEE, 2014: 1-4. [9] COMBES C M, DORENBOS P, VAN EIJK C W E, et al. Optical and scintillation properties of pure and Ce3+-doped Cs2LiYCl6 and Li3YCl6:Ce3+ crystals[J]. Journal of Luminescence, 1999, 82(4): 299-305. [10] VAN LOEF E V D, GLODO J, HIGGINS W M, et al. Optical and scintillation properties of Cs2/LiYCl6:Ce3 and Cs2LiYCl6:Pr3 crystals[J]. IEEE Transactions on Nuclear Science, 2005, 52(5): 1819-1822. [11] GLODO J, VAN LOEF E, HAWRAMI R, et al. Selected properties of Cs2LiYCl6, Cs2LiLaCl6, and Cs2LiLaBr6 scintillators[J]. IEEE Transactions on Nuclear Science, 2011, 58(1): 333-338. [12] SHIRWADKAR U, GLODO J, VAN LOEF E V, et al. Scintillation properties of Cs2LiLaBr6 (CLLB) crystals with varying Ce3+ concentration[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 652(1): 268-270. [13] YANG K, MENGE P R, LEJAY J, et al. Improving the neutron and gamma-ray response of Cs2LiLaBr6:Ce3+[C]//2013 IEEE Nuclear Science Symposium and Medical Imaging Conference, 2013, Seoul, Korea. [14] GLODO J, HAWRAMI R, VAN LOEF E, et al. Dual gamma neutron detection with Cs2LiLaCl6[C]//SPIE Optical Engineering + Applications. Proc SPIE 7449, Hard X-Ray, Gamma-Ray, and Neutron Detector Physics Ⅺ, San Diego, California, USA. 2009, 7449: 93-99. [15] SHIRWADKAR U, GLODO J, VAN LOEF E, et al. Investigating scintillation properties of Ce doped Cs2LiYBr6[C]//IEEE Nuclear Science Symposuim & Medical Imaging Conference. October 30-November 6, 2010, Knoxville, TN, USA. IEEE, 2011: 1585-1588. [16] SHIRWADKAR U, HAWRAMI R, GLODO J, et al. Novel scintillation material Cs2LiLaBr6-xClx:Ce for gamma-ray and neutron spectroscopy[C]//2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC). October 27-November 3, 2012, Anaheim, CA, USA. IEEE, 2013: 1963-1967. [17] PAN S K, ZHANG P, ZHU H B, et al. Crystal growth, luminescence and scintillation properties of mixed Ce:Cs2LiLaxY1-xCl6 (0<x≤0.4) scintillators[J]. Journal of Luminescence, 2018, 201: 211-216. [18] VAN LOEF E D, DORENBOS P, VAN EIJK C E, et al. Scintillation and spectroscopy of the pure and Ce3-doped elpasolites: Cs2LiYX6(X=Cl, Br)[J]. Journal of Physics: Condensed Matter, 2002, 14(36): 8481-8496. [19] BESSIERE A, DORENBOS P, VAN EIJK C W E, et al. New thermal neutron scintillators: Cs2LiYCl6:Ce and Cs2LiYBr6:Ce[J]. IEEE Transactions on Nuclear Science, 2004, 51(5): 2970-2972. [20] BESSIERE A, DORENBOS P, VAN EIJK C W E, et al. Luminescence and scintillation properties of CS[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 537(1/2): 242-246. [21] VAN LOEF E V, HIGGINS W M, SQUILLANTE M R, et al. Thermoluminescence of Cs2LiYCl6, Cs2LiYCl6:Ce3+ and Cs2LiYCl6:Pr3+ crystals[C]//2006 IEEE Nuclear Science Symposium Conference Record. October 29-November 1, 2006, San Diego, CA, USA. IEEE, 2007: 1183-1186. [22] GLODO J, HIGGINS W M, VAN LOEF E V D, et al. Scintillation properties of 1 inch Cs2LiYCl6:Ce crystals[J]. IEEE Transactions on Nuclear Science, 2008, 55(3): 1206-1209. [23] GLODO J, HIGGINS W M, VAN LOEF E V D, et al. Cs2LiYCl6:Ce scintillator for nuclear monitoring applications[J]. IEEE Transactions on Nuclear Science, 2009, 56(3): 1257-1261. [24] GLODO J, HAWRAMI R, VAN LOEF E, et al. Pulse shape discrimination with selected elpasolite crystals[J]. IEEE Transactions on Nuclear Science, 2012, 59(5): 2328-2333. [25] GIAZ A, PELLEGRI L, CAMERA F, et al. The CLYC-6 and CLYC-7 response to γ-rays, fast and thermal neutrons[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 810: 132-139. [26] MENGE P R, RICHAUD D. Behavior of Cs2LiYCl6:Ce scintillator up to 175 ℃[C]//2011 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Valencia, Spain, 2011: 1598-1601. [27] YANG K, MENGE P R. Pulse shape discrimination of Cs2LiYCl6:Ce3+ scintillator from -30 ℃ to 180 ℃[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 784: 74-79. [28] RODNYI P A, MIKHAILIK V B, STRYGANYUK G B, et al. Luminescence properties of Ce-doped Cs2LiLaCl6 crystals[J]. Journal of Luminescence, 2000, 86(2): 161-166. [29] ZHU H B, ZHANG P, PAN S K, et al. Growth and characterization of Cs2LiLaCl6:Ce single crystals[J]. Journal of Crystal Growth, 2019, 507: 332-337. [30] GUSS P P, STAMPAHAR T G, MUKHOPADHYAY S, et al. Scintillation properties of a Cs2LiLa(Br6)90%(Cl6)10%:Ce3+ (CLLBC) crystal[C]//SPIE Optical Engineering+Applications. Proc SPIE 9215, Radiation Detectors: Systems and Applications XV, San Diego, California, USA. 2014, 9215: 27-41. [31] TONG Y F, TANG G, WEI Q H, et al. Effects of Cl- substitution on the scintillation properties of Cs2LiLaBr6-xClx:Ce crystals[J]. Journal of Luminescence, 2022, 247: 118896. [32] TONG Y F, WEI Q H, LI W, et al. Effects of Ce3+ substitution on the local structure of cerium and scintillation properties of CLLBC:Ce crystals[J]. Journal of Crystal Growth, 2022, 600: 126940. [33] KIM H J, ROOH G, PARK H, et al. Tl2LiYCl6(Ce3+): new Tl-based elpasolite scintillation material[J]. IEEE Transactions on Nuclear Science, 2016, 63(2): 439-442. [34] HAWRAMI R, ARIESANTI E, SOUNDARA-PANDIAN L, et al. Tl2LiYCl6:Ce: a new elpasolite scintillator[J]. IEEE Transactions on Nuclear Science, 2016, 63(6): 2838-2841. [35] HAWRAMI R, ARIESANTI E, WEI H, et al. Tl2LiYCl6: large diameter, high performing dual mode scintillator[J]. Crystal Growth & Design, 2017, 17(7): 3960-3964. [36] MORETTI F, ONKEN D, PERRODIN D, et al. Investigation of the competition between Tl+ and Ce3+ scintillation in Tl2LiYCl6:Ce, an elpasolite scintillator[J]. Journal of Luminescence, 2022, 241: 118549. [37] KNITEL M J, DORENBOS P, DE HAAS J T M, et al. LiBaF3, a thermal neutron scintillator with optimal n-γ discrimination[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1996, 374(2): 197-201. [38] COMBES C M, DORENBOS P, VAN EIJK C W E, et al. Optical and scintillation properties of LiBaF3:Ce crystals[J]. Journal of Luminescence, 1997, 72/73/74: 753-755. [39] REEDER P L, BOWYER S M. Neutron/gamma discrimination in LiBaF3 scintillator[J]. Journal of Radioanalytical and Nuclear Chemistry, 2001, 248(3): 707-711. [40] REEDER P L, BOWYER S M. Calibration of LiBaF3:Ce scintillator for fission spectrum neutrons[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2002, 484(1/2/3): 469-485. [41] HUA R N, LEI B F, XIE D M, et al. Synthesis of the complex fluoride LiBaF3 and optical spectroscopy properties of LiBaF3:M(M=Eu, Ce) through a solvothermal process[J]. Journal of Solid State Chemistry, 2003, 175(2): 284-288. [42] GEKTIN A, SHIRAN N, NEICHEVA S, et al. LiCaAlF6:Ce crystal: a new scintillator[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2002, 486(1/2): 274-277. [43] YAMAZAKI A, WATANABE K, URITANI A, et al. Neutron-gamma discrimination based on pulse shape discrimination in a Ce:LiCaAlF6 scintillator[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 652(1): 435-438. [44] WATANABE K, KONDO Y, YAMAZAKI A, et al. Temperature dependence of neutron-gamma discrimination based on pulse shape discrimination technique in a Ce:LiCaAlF6 scintillator[J]. IEEE Transactions on Nuclear Science, 2013, 60(2): 959-962. [45] WATANABE K, YANAGIDA T, FUKUDA K, et al. Portable neutron detector using Ce:LiCaAlF6 scintillator[J]. Sens Mater, 2015, 27: 269-275. [46] YANAGIDA T, YOSHIKAWA A, YOKOTA Y, et al. Crystal growth, optical properties, and α-ray responses of Ce-doped LiCaAlF6 for different Ce concentration[J]. Optical Materials, 2009, 32(2): 311-314. [47] YANG M, LOYD M, SHI J, et al. LiCaAlF6:Eu and LiCaAlF6:Ce single crystals grown by the vertical bridgman method in a nonvacuum atmosphere and their optical and scintillation properties[J]. Crystal Growth & Design, 2021, 21(2): 847-853. [48] KAWAGUCHI N, OKADA G, FUKUDA K, et al. Temperature dependence of scintillation responses in rare-earth-ions-doped LiCaAlF6 single crystals[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 954: 161518. [49] SHIMAMURA K, BALDOCHI S L, RANIERI I M, et al. Crystal growth of Ce-doped and undoped LiCaAlF6 by the Czochralski technique under CF4 atmosphere[J]. Journal of Crystal Growth, 2001, 223(3): 383-388. [50] SHAH K S, GLODO J, VAN LOEF E V, et al. Scintillator materials comprising lithium, an alkaline earth metal, and a halide: US20200224093[P]. 2020-07-16. [51] SOUNDARA-PANDIAN L, HAWRAMI R, GLODO J, et al. Lithium alkaline halides—next generation of dual mode scintillators[J]. IEEE Transactions on Nuclear Science, 2016, 63(2): 490-496. |