[1] SOROKIN A B, KUDRIK E V. Phthalocyanine metal complexes: versatile catalysts for selective oxidation and bleaching[J]. Catalysis Today, 2011, 159(1): 37-46. [2] 沈永嘉. 酞菁的合成与应用[M]. 北京: 化学工业出版社, 2000. SHEN Y J. Synthesis and application of phthalocyanine[M]. Beijing: Chemical Industry Press, 2000 (in Chinese). [3] URBANI M, RAGOUSSI M E, NAZEERUDDIN M K, et al. Phthalocyanines for dye-sensitized solar cells[J]. Coordination Chemistry Reviews, 2019, 381: 1-64. [4] DECHANT M, LEHMANN M, UZURANO G, et al. The liquid crystal click procedure for oligothiophene-tethered phthalocyanines-self-assembly, alignment and photocurrent[J]. Journal of Materials Chemistry C, 2021, 9(17): 5689-5698. [5] LINDSEY J S, BOCIAN D F. Molecules for charge-based information storage[J]. Accounts of Chemical Research, 2011, 44(8): 638-650. [6] SOROKIN A B. Phthalocyanine metal complexes in catalysis[J]. Chemical Reviews, 2013, 113(10): 8152-8191. [7] RAK J, POUCKOVA P, BENES J, et al. Drug delivery systems for phthalocyanines for photodynamic therapy[J]. Anticancer Research, 2019, 39(7): 3323-3339. [8] DUMOULIN F, DURMUŞ M, AHSEN V, et al. Synthetic pathways to water-soluble phthalocyanines and close analogs[J]. Coordination Chemistry Reviews, 2010, 254(23/24): 2792-2847. [9] 柴凤兰, 赵开楼. 酞菁类化合物合成研究进展[J]. 山东化工, 2016, 45(15): 55-65+67. CHAI F L, ZHAO K L. Progress in the synthesis of phthalocyanines[J]. Shandong Chemical Industry, 2016, 45(15): 55-65+67 (in Chinese). [10] JIANG H, HU P, YE J, et al. Molecular crystal engineering: tuning organic semiconductor from p-type to n-type by adjusting their substitutional symmetry[J]. Advanced Materials, 2017, 29(10): 1605053. [11] MELVILLE O A, LESSARD B H, BENDER T P. Phthalocyanine-based organic thin-film transistors: a review of recent advances[J]. ACS Applied Materials & Interfaces, 2015, 7(24): 13105-13118. [12] 徐如人, 庞文琴. 无机合成与制备化学[M]. 北京: 高等教育出版社, 2001. XU R R, PANG W Q. Inorganic synthesis and preparation chemistry[M]. Beijing: Higher Education Press, 2001 (in Chinese). [13] MRUTHUNJAYAPPA M H, KOTRAPPANAVAR N S, MONDAL D. New prospects on solvothermal carbonisation assisted by organic solvents, ionic liquids and eutectic mixtures-A critical review[J]. Progress in Materials Science, 2022, 126: 100932. [14] LAI J P, NIU W X, LUQUE R, et al. Solvothermal synthesis of metal nanocrystals and their applications[J]. Nano Today, 2015, 10(2): 240-267. [15] 夏道成, 于书坤, 马春雨, 等. 溶剂热法直接合成酞菁铜晶体[J]. 高等学校化学学报, 2008, 29(2): 244-246. XIA D C, YU S K, MA C Y, et al. Directly solvothermal synthesis of copper phthalocyanine crystals[J]. Chemical Journal of Chinese Universities, 2008, 29(2): 244-246 (in Chinese). [16] XIA D C, YU S K, SHEN R S, et al. A novel method for the direct synthesis of crystals of copper phthalocyanine[J]. Dyes and Pigments, 2008, 78(1): 84-88. [17] DEFEYT C, VANDENABEELE P, GILBERT B, et al. Contribution to the identification of α-, β- and ε-copper phthalocyanine blue pigments in modern artists' paints by X-ray powder diffraction, attenuated total reflectance micro-Fourier transform infrared spectroscopy and micro-Raman spectroscopy[J]. Journal of Raman Spectroscopy, 2012, 43(11): 1772-1780. [18] SAADATI ARDESTANI N, SODEIFIAN G, ALI SAJADIAN S. Preparation of phthalocyanine green nano pigment using supercritical CO2 gas antisolvent (GAS): experimental and modeling[J]. Heliyon, 2020, 6(9): e04947. [19] GE S X, ZHANG Y G, HUANG B J, et al. Synthesis of highly crystalline copper phthalocyanine needles by solvothermal method[J]. Materials Letters, 2016, 163: 61-64. [20] JIANG H, YE J, HU P, et al. Fluorination of metal phthalocyanines: single-crystal growth, efficient N-channel organic field-effect transistors, and structure-property relationships[J]. Scientific Reports, 2014, 4: 7573. [21] JIANG H, HU P, YE J, et al. Hole mobility modulation in single-crystal metal phthalocyanines by changing the metal-π/π-π interactions[J]. Angewandte Chemie, 2018, 57(32): 10112-10117. [22] SANTHOSHI KIRAN K S, PREETHI V, KUMAR S. A brief review of organic solar cells and materials involved in its fabrication[J]. Materials Today: Proceedings, 2022, 56: 3826-3829. [23] LESSARD B H. The rise of silicon phthalocyanine: from organic photovoltaics to organic thin film transistors[J]. ACS Applied Materials & Interfaces, 2021, 13(27): 31321-31330. [24] RUTTER H A, MCQUEEN J D. Synthesis of 52Mn and 74As labelled phthalocyanines[J]. Journal of Inorganic and Nuclear Chemistry, 1960, 12(3/4): 361-363. [25] LI D P, GE S X, SUN G F, et al. A novel and green route for solvothermal synthesis of manganese phthalocyanine crystals[J]. Dyes and Pigments, 2015, 113: 200-204. [26] GUO Z C, CHEN B, ZHANG M Y, et al. Zinc phthalocyanine hierarchical nanostructure with hollow interior space: solvent-thermal synthesis and high visible photocatalytic property[J]. Journal of Colloid and Interface Science, 2010, 348(1): 37-42. [27] LI D P, GE S X, YUAN T C, et al. Green synthesis and characterization of crystalline zinc phthalocyanine and cobalt phthalocyanine prisms by a simple solvothermal route[J]. CrystEngComm, 2018, 20(19): 2749-2758. [28] 夏道成, 任旭文, 李万程. 酞菁镍晶体的化学工艺合成与探究[J]. 化学试剂, 2015, 37(12): 1140-1142+1145. XIA D C, REN X W, LI W C. Process of chemical synthesis and explore about nickel phthalocyanine crystals[J]. Chemical Reagents, 2015, 37(12): 1140-1142+1145 (in Chinese). [29] LIU T T, ZHANG F Y, RUAN L X, et al. Facile synthesis and characterization of crystalline iron phthalocyanine[J]. Materials Letters, 2019, 237: 319-322. [30] LI D P, ZHANG P, GE S X, et al. A green route to prepare metal-free phthalocyanine crystals with controllable structures by a simple solvothermal method[J]. RSC Advances, 2021, 11(50): 31226-31234. [31] ZHANG M Y, SHAO C L, GUO Z C, et al. Highly efficient decomposition of organic dye by aqueous-solid phase transfer and in situ photocatalysis using hierarchical copper phthalocyanine hollow spheres[J]. ACS Applied Materials & Interfaces, 2011, 3(7): 2573-2578. [32] MU J B, SHAO C L, GUO Z C, et al. Solvothermal synthesis and electrochemical properties of 3D flower-like iron phthalocyanine hierarchical nanostructure[J]. Nanoscale, 2011, 3(12): 5126-5131. [33] GUO Z C, CHEN B, MU J B, et al. Iron phthalocyanine/TiO2 nanofiber heterostructures with enhanced visible photocatalytic activity assisted with H2O2[J]. Journal of Hazardous Materials, 2012, 219/220: 156-163. [34] ZHANG M Y, SHAO C L, GUO Z C, et al. Hierarchical nanostructures of copper(II) phthalocyanine on electrospun TiO2 nanofibers: controllable solvothermal-fabrication and enhanced visible photocatalytic properties[J]. ACS Applied Materials & Interfaces, 2011, 3(2): 369-377. [35] GUO X H, ZHOU X J, LI X H, et al. Bismuth oxychloride (BiOCl)/copper phthalocyanine (CuTNPc) heterostructures immobilized on electrospun polyacrylonitrile nanofibers with enhanced activity for floating photocatalysis[J]. Journal of Colloid and Interface Science, 2018, 525: 187-195. [36] GUO Z C, SHAO C L, ZHANG M Y, et al. Dandelion-like Fe3O4@CuTNPc hierarchical nanostructures as a magnetically separable visible-light photocatalyst[J]. Journal of Materials Chemistry, 2011, 21(32): 12083-12088. |