人工晶体学报 ›› 2023, Vol. 52 ›› Issue (4): 688-700.
任怡静, 马新国, 张锋, 陆晶晶, 张力, 王晗
收稿日期:
2022-12-07
出版日期:
2023-04-15
发布日期:
2023-04-28
通信作者:
马新国,博士,教授。E-mail:maxg@hbut.edu.cn
作者简介:
任怡静(1998—),女,山东省人,博士研究生。E-mail:renyij1@163.com
基金资助:
REN Yijing, MA Xinguo, ZHANG Feng, LU Jingjing, ZHANG Li, WANG Han
Received:
2022-12-07
Online:
2023-04-15
Published:
2023-04-28
摘要: BaTiO3凭借其较高的电光系数、优良的压电性质和非线性光学性质,成为制备高性能电光调制器的关键材料。其制备方法、实验条件和衬底的选择等决定了薄膜的质量、生长取向和电光系数等,进而影响电光调制器的传播损耗、半波电压、消光比等性能。本文从电光调制器的工作原理出发,围绕BaTiO3薄膜的制备方法、实验条件和薄膜衬底等,探讨了成膜的取向和质量的影响因素,分析了各个BaTiO3薄膜制备方法的优缺点,论述了波导的结构及参数,并展望了未来优化BaTiO3薄膜制备和波导制作工艺的方向。
中图分类号:
任怡静, 马新国, 张锋, 陆晶晶, 张力, 王晗. BaTiO3薄膜的制备及其在电光调制器的应用[J]. 人工晶体学报, 2023, 52(4): 688-700.
REN Yijing, MA Xinguo, ZHANG Feng, LU Jingjing, ZHANG Li, WANG Han. Preparation of BaTiO3 Thin Film and Its Application in Electro-Optic Modulator[J]. Journal of Synthetic Crystals, 2023, 52(4): 688-700.
[1] REIS J D, SHUKLA V, STAUFFER D R, et al. Technology options for 400G implementation[C]//Optical Networking Forum (OIF), OIF-Tech-Options-400G-01.0, 2015. [2] DOUGHERTY G, MARGAN P. OCLARO. Photothermal switching with light absorbers for silicon-based devices[C]//The 29th annual ROTH conference presentations, 2017. [3] 秦妍妍, 吴立枢, 陈泽贤, 等. 薄膜铌酸锂电光调制器研究进展[J]. 光电子技术, 2021, 41(3): 159-166. QIN Y Y, WU L S, CHEN Z X, et al. Research progress of thin-film lithium niobate electro-optic modulators[J]. Optoelectronic technology, 2021, 41(3): 159-166(in Chinese). [4] ABEL S, ELTES F, ORTMANN J E, et al. Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon[J]. Nature Materials, 2019, 18(1): 42-47. [5] KIM I D, AVRAHAMI Y, SOCCI L, et al. Ridge waveguide using highly oriented BaTiO3 thin films for electro-optic application[J]. Journal of Asian Ceramic Societies, 2014, 2(3): 231-234. [6] LIN W J, TSENG T Y, LU H B, et al. Growth and ferroelectricity of epitaxial-like BaTiO3 films on single-crystal MgO, SrTiO3, and silicon substrates synthesized by pulsed laser deposition[J]. Journal of Applied Physics, 1995, 77(12): 6466-6471. [7] CAI W, FAN Y Z, GAO J C, et al. Microstructure, dielectric properties and diffuse phase transition of barium stannate titanate ceramics[J]. Journal of Materials Science: Materials in Electronics, 2011, 22(3): 265-272. [8] HWANG J, KOLODIAZHNYI T, YANG J, et al. Doping and temperature-dependent optical properties of oxygen-reduced BaTiO3-δ[J]. Physical Review B, 2010, 82(21): 214109. [9] LI Y W, LI F X. The effect of domain patterns on 180° domain switching in BaTiO3 crystals during antiparallel electric field loading[J]. Applied Physics Letters, 2014, 104(4): 042908. [10] HE D Y, XING X R, QIAO L J, et al. Temperature change effect on BaTiO3 single crystal surface potential around domain walls[J]. Applied Surface Science, 2014, 311: 837-841. [11] YANG Q, ZHANG W, YUAN M L, et al. Preparation and characterization of self-assembled percolative BaTiO3-CoFe2O4 nanocomposites via magnetron co-sputtering[J]. Science and Technology of Advanced Materials, 2014, 15(2): 025003. [12] HU Z G, WANG G S, HUANG Z M, et al. Structure-related infrared optical properties of BaTiO3 thin films grown on Pt/Ti/SiO2/Si substrates[J]. Journal of Physics and Chemistry of Solids, 2003, 64(12): 2445-2450. [13] ZHANG W, HU F R, ZHANG H, et al. Investigation of the electrical properties of RF sputtered BaTiO3 films grown on various substrates[J]. Materials Research Bulletin, 2017, 95: 23-29. [14] ZHANG W, HU F R. Effects of substrate-controlled-orientation on the electrical performance of sputtered BaTiO3 thin films[J]. Journal of Vacuum Science & Technology B, 2020, 38(1): 012208. [15] 孙翔宇. 钛酸钡晶体薄膜波导的优化设计及加工技术的研究[D]. 长春: 长春理工大学, 2018. SUN X Y. Investigation for the optimal design and fabrication technology of BaTiO3 crystal thin-film waveguides[D]. Changchun: Changchun University of Science and Technology, 2018 (in Chinese). [16] ZHAO Y Y, OUYANG J. Columnar nanograined BaTiO3 ferroelectric thin films integrated on Si with a sizable dielectric tunability[J]. Journal of Inorganic Materials, 2022, 37(6): 596. [17] 张 静, 付秀华, 杨 飞, 等. BaTiO3晶体薄膜PLD法生长工艺参量研究[J]. 光子学报, 2014, 43(5): 77-81. ZHANG J, FU X H, YANG F, et al. Growth process parameters of BaTiO3 crystal thin film in PLD method[J]. Acta Photonica Sinica, 2014, 43(5): 77-81 (in Chinese). [18] WEI X, HUANG W, JIE W, et al. Orientation growth of BaTiO3 ferroelectric films on the substrates of silicon[J]. Journal of the Chinese Ceramic Society, 2007, 35(5): 583-587. [19] 彭 静. 钛酸钡系铁电薄膜的制备及光学和光电行为研究[D]. 武汉: 武汉大学, 2013. PENG J. A study on the fabrication, optical and optoelectronic behavior of Barium titanate-based ferroelectric thin films[D]. Wuhan: Wuhan University, 2013 (in Chinese). [20] 马 玲, 沈小丰, 王 杰. 电光调制系统设计[J]. 电子工程师, 2007, 33(3): 38-39+58. MA L, SHEN X F, WANG J. Design of electro-optic modulation system[J]. Electronic Engineer, 2007, 33(3): 38-39+58 (in Chinese). [21] KORMONDY K J, POPOFF Y, SOUSA M, et al. Microstructure and ferroelectricity of BaTiO3 thin films on Si for integrated photonics[J]. Nanotechnology, 2017, 28(7): 075706. [22] TANG P S, TOWNER D J, HAMANO T, et al. Electrooptic modulation up to 40 GHz in a Barium titanate thin film waveguide modulator[J]. Optics Express, 2004, 12(24): 5962-5967. [23] TANG P S, MEIER A L, TOWNER D J, et al. BaTiO3 thin-film waveguide modulator with a low voltage-length product at near-infrared wavelengths of 0.98 and 1.55 μm[J]. Optics Letters, 2005, 30(3): 254-256. [24] ELTES F, MAI C, CAIMI D, et al. A BaTiO3-based electro-optic pockels modulator monolithically integrated on an advanced silicon photonics platform[J]. Journal of Lightwave Technology, 2019, 37(5): 1456-1462. [25] KORMONDY K J, ABEL S, FALLEGGER F, et al. Analysis of the Pockels effect in ferroelectric barium titanate thin films on Si(001)[J]. Microelectronic Engineering, 2015, 147: 215-218. [26] XIONG C, PERNICE W H P, NGAI J H, et al. Active silicon integrated nanophotonics: ferroelectric BaTiO3 devices[J]. Nano Letters, 2014, 14(3): 1419-1425. [27] CASTERA P, GUTIERREZ A M, TULLI D, et al. Electro-optical modulation based on pockels effect in BaTiO3 with a multi-domain structure[J]. IEEE Photonics Technology Letters, 2016, 28(9): 990-993. [28] POSADAS A B, PARK H, REYNAUD M, et al. Thick BaTiO3 epitaxial films integrated on Si by RF sputtering for electro-optic modulators in Si photonics[J]. ACS Applied Materials & Interfaces, 2021, 13(43): 51230-51244. [29] LIU X, WU C, ZHANG P. Comparison of two-step growth and direct growth for GaAs on Si[J]. Semiconductor Optoelectronics,2002, 23(2):128-131. [30] TOWNER D, NI J, MARKS T, et al. Effects of two-stage deposition on the structure and properties of heteroepitaxial BaTiO3 thin films[J]. Journal of Crystal Growth, 2003, 255(1): 107-113. [31] TEREN A R, BELOT J A, EDLEMAN N L, et al. MOCVD of epitaxial BaTiO3 films using a liquid Barium precursor[J]. Chemical Vapor Deposition, 2000, 6(4): 175-177. [32] QIU J H, DING J N, YUAN N Y, et al. Film thickness dependence of electro-optic effect in epitaxial BaTiO3 thin films[J]. Solid State Communications, 2011, 151(19): 1344-1348. [33] SHUSTER G, KREININ O, LAKIN E, et al. MOCVD growth of barium-strontium titanate films using newly developed barium and strontium precursors[J]. Thin Solid Films, 2010, 518(16): 4658-4661. [34] REINKE M, KUZMINYKH Y, HOFFMANN P. Combinatorial HV-CVD survey of barium triisopropyl cyclopentadienyl and titanium tetraisopropoxide for the deposition of BaTiO3[J]. Physica Status Solidi (a), 2015, 212(7): 1556-1562. [35] REINKE M, KUZMINYKH Y, ELTES F, et al. Low temperature epitaxial barium titanate thin film growth in high vacuum CVD[J]. Advanced Materials Interfaces, 2017, 4(18): 1700116. [36] PETRARU A, SCHUBERT J, SCHMID M, et al. Ferroelectric BaTiO3 thin-film optical waveguide modulators[J]. Applied Physics Letters, 2002, 81(8): 1375-1377. [37] PETRARU A, SCHUBERT J, SCHMID M, et al. Integrated optical Mach Zehnder modulator based on polycrystalline BaTiO3[J]. Optics Letters, 2003, 28(24): 2527-2529. [38] VAKULOV Z, KORZUN K, TOMINOV R V, et al. Formation of nanocrystalline BaTiO3 thin films by pulsed laser deposition[C]//Proc SPIE 12157, International Conference on Micro- and Nano-Electronics 2021, 2022, 12157: 413-419. [39] LYU J K, FINA I, SOLANAS R, et al. Tailoring lattice strain and ferroelectric polarization of epitaxial BaTiO3 thin films on Si(001)[J]. Scientific Reports, 2018, 8(1): 1-10. [40] BEHERA S, KHARE A. Influence of substrate temperature and oxygen pressure on the structural and optical properties of polycrystalline BaTiO3 thin films grown by PLD[J]. Materials Science in Semiconductor Processing, 2022, 140: 106379. [41] HSU M H M, MARINELLI A, MERCKLING C, et al. Orientation-dependent electro-optical response of BaTiO3 on SrTiO3-buffered Si(001) studied via spectroscopic ellipsometry[J]. Optical Materials Express, 2017, 7(6): 2030-2039. [42] HILTUNEN J, SENEVIRATNE D, SUN R, et al. Optical properties of BaTiO3 thin films: influence of oxygen pressure utilized during pulsed laser deposition[J]. Journal of Electroceramics, 2009, 22(4): 416-420. [43] ESTRADA F R, DE MORAES L G M, VITAL F L A, et al. Island growth mode in pulsed laser deposited ferroelectric BaTiO3 thin films: the role of oxygen pressure during deposition[J]. Ferroelectrics, 2019, 545(1): 39-44. [44] LYU J K, ESTANDÍA S, GAZQUEZ J, et al. Control of polar orientation and lattice strain in epitaxial BaTiO3 films on silicon[J]. ACS Applied Materials & Interfaces, 2018, 10(30): 25529-25535. [45] WANG T H, HSU P C, KORYTOV M, et al. Polarization control of epitaxial barium titanate (BaTiO3) grown by pulsed-laser deposition on a MBE-SrTiO3/Si(001) pseudo-substrate[J]. Journal of Applied Physics, 2020, 128(10): 104104. [46] 罗梦希. BaTiO3晶体薄膜波导电光特性研究[D]. 长春: 长春理工大学, 2020. LUO M X. Research on electro-optic characteristics of BaTiO3 crystal thin film waveguide[D]. Changchun: Changchun University of Science and Technology, 2020 (in Chinese). [47] 董 艺. BaTiO3薄膜的制备及光电性能研究[D]. 桂林: 桂林电子科技大学, 2021. DONG Y. The preparation of BaTiO3 thin film and its photoelectric properties[D]. Guilin: Guilin University of Electronic Technology, 2021 (in Chinese). [48] ZHANG W, YUAN M L, WANG X Y, et al. Highly C-axis oriented Barium titanate ferroelectric films deposited on SrTiO3 substrate using an off-axis sputtered conductive oxide layer as bottom electrode[J]. Advanced Materials Research, 2011, 399/400/401: 926-929. [49] SHIH W C, LIANG Y S, WU M S. Preparation of BaTiO3 Films on Si substrate with MgO buffer layer by RF magnetron sputtering[J]. Japanese Journal of Applied Physics, 2008, 47(9): 7475-7479. [50] WANG L Q, KANG H M, LI K Y, et al. Phase evolution of BaTiO3 nanoparticles: an identification of BaTi2O5 intermediate phase in calcined stearic acid gel[J]. The Journal of Physical Chemistry C, 2008, 112(7): 2382-2388. [51] LI W, XU Z J, CHU R Q, et al. Structure and electrical properties of BaTiO3 prepared by sol-gel process[J]. Journal of Alloys and Compounds, 2009, 482(1/2): 137-140. [52] WANG W W, CAO L X, LIU W, et al. Low-temperature synthesis of BaTiO3 powders by the sol-gel-hydrothermal method[J]. Ceramics International, 2013, 39(6): 7127-7134. [53] CHINCHAMALATPURE V R, GHOSH S A, CHAUDHARI G N. Synthesis and electrical characterization of BaTiO3 thin films on Si(100)[J]. Materials Sciences and Applications, 2010, 1(4): 187-190. [54] EDMONDSON B I, KWON S, LAM C H, et al. Epitaxial, electro-optically active Barium titanate thin films on silicon by chemical solution deposition[J]. Journal of the American Ceramic Society, 2020, 103(2): 1209-1218. [55] EDMONDSON B I, KWON S, ORTMANN J E, et al. Composition and annealing effects on the linear electro-optic response of solution-deposited Barium strontium titanate[J]. Journal of the American Ceramic Society, 2020, 103(10): 5700-5705. [56] ABEL S. Electro-optic photonic devices based on epitaxial barium titanate thin films on silicon[D]. Grenoble: Université Grenoble Alpes Doctoral Dissertation, 2014. [57] TSURUMI T, MIYASOU T, ISHIBASHI Y, et al. Preparation and dielectric property of BaTiO3-SrTiO3 artificially modulated structures[J]. Japanese Journal of Applied Physics, 1998, 37(9S): 5104. [58] MERCKLING C, KORYTOV M, CELANO U, et al. Epitaxial growth and strain relaxation studies of BaTiO3 and BaTiO3/SrTiO3 superlattices grown by MBE on SrTiO3-buffered Si(001) substrate[J]. Journal of Vacuum Science & Technology A, 2019, 37(2): 021510. [59] IZUHARA T, GHEORMA I L, OSGOOD R M, et al. Single-crystal Barium titanate thin films by ion slicing[J]. Applied Physics Letters, 2003, 82(4): 616-618. [60] SULSER F, POBERAJ G, KOECHLIN M, et al. Photonic crystal structures in ion-sliced lithium niobate thin films[J]. Optics Express, 2009, 17(22): 20291-20300. [61] 刘海锋, 郭宏杰, 谭满清, 等. 铌酸锂薄膜调制器的研究进展[J]. 中国光学, 2022, 15(1): 1-13. LIU H F, GUO H J, TAN M Q, et al. Research progress of lithium niobate thin-film modulators[J]. Chinese Optics, 2022, 15(1): 1-13 (in Chinese). [62] GIROUARD P, CHEN P C, JEONG Y K, et al. χ(2) modulator with 40-GHz modulation utilizing BaTiO3 photonic crystal waveguides[J]. IEEE Journal of Quantum Electronics, 2017, 53(4): 1-10. [63] ELTES F, KROH M, CAIMI D, et al. A novel 25 Gbps electro-optic Pockels modulator integrated on an advanced Si photonic platform[C]//2017 IEEE International Electron Devices Meeting (IEDM). December 2-6, 2017, San Francisco, CA, USA. IEEE, 2018: 24.5.1-24.5.4. [64] UMMETHALA S, KEMAL J N, ALAM A S, et al. Hybrid electro-optic modulator combining silicon photonic slot waveguides with high-k radio-frequency slotlines[J]. Optica, 2021, 8(4): 511-519. [65] ORTMANN J E, ELTES F, CAIMI D, et al. Ultra-low-power tuning in hybrid barium titanate-silicon nitride electro-optic devices on silicon[J]. ACS Photonics, 2019, 6(11): 2677-2684. [66] ELTES F, CAIMI D, FALLEGGER F, et al. Low-loss BaTiO3-Si waveguides for nonlinear integrated photonics[J]. ACS Photonics, 2016, 3(9): 1698-1703. [67] PERNICE W H P, XIONG C, WALKER F J, et al. Design of a silicon integrated electro-optic modulator using ferroelectric BaTiO3 films[J]. IEEE Photonics Technology Letters, 2014, 26(13): 1344-1347. [68] CASTERA P, TULLI D, GUTIERREZ A M, et al. Influence of BaTiO3 ferroelectric orientation for electro-optic modulation on silicon[J]. Optics Express, 2015, 23(12): 15332-15342. [69] AL-ITHAWI S, HEKMAT W A, HUBEATIR K A, et al. Characterization of bulk BaTiO3 material for optical modulator applications[J]. Materials Science Forum, 2020, 1002: 132-139. [70] ELTES F, ORTMANN J E, URBONAS D, et al. Record high pockels coefficient in PIC-compatible BaTiO3/Si photonic devices[C]//2018 European Conference on Optical Communication (ECOC). September 23-27, 2018, Rome, Italy. IEEE, 2018: 1-3. |
[1] | 马翠坪, 陈家颖, 陈怀熹, 梁万国, 伍秋林, 冯新凯. 光纤端面耦合周期极化铌酸锂(PPLN)薄膜波导器件的研究[J]. 人工晶体学报, 2024, 53(8): 1319-1325. |
[2] | 林锦添, 高仁宏, 管江林, 黎春桃, 姚妮, 程亚. 低损耗薄膜铌酸锂光集成器件的研究进展[J]. 人工晶体学报, 2024, 53(3): 372-394. |
[3] | 谢汉荣, 杨铁锋, 韦玉明, 关贺元, 卢惠辉. 薄膜铌酸锂光电探测器近期研究进展[J]. 人工晶体学报, 2024, 53(3): 410-425. |
[4] | 叶志霖, 李世凤, 崔国新, 尹志军, 王学斌, 赵刚, 胡小鹏, 祝世宁. 晶圆级薄膜铌酸锂波导制备工艺与性能表征[J]. 人工晶体学报, 2024, 53(3): 426-433. |
[5] | 段雨濛, 贾曰辰, 吕金蔓. 飞秒激光直写铌酸锂晶体半包层光波导[J]. 人工晶体学报, 2024, 53(3): 458-464. |
[6] | 吴文杰, 何代华, 程思远, 何夕云. PLZT透明陶瓷的微区组分调控及梯度设计与电光性能研究[J]. 人工晶体学报, 2024, 53(11): 1956-1963. |
[7] | 梁财安, 董海亮, 贾志刚, 贾伟, 梁建, 许并社. 1 060 nm锑化物应变补偿有源区激光二极管仿真及其性能研究[J]. 人工晶体学报, 2023, 52(9): 1624-1634. |
[8] | 刘青雄, 王天予, 刘孚安, 吴倩, 尹延如, 赫崇君, 高泽亮, 夏明军. 非线性光学晶体K3B6O10Br的生长与光电性能研究[J]. 人工晶体学报, 2023, 52(7): 1296-1301. |
[9] | 颜涛, 范雨杰, 徐峰, 陈昱, 罗敏. KLi(HC3N3O3)·2H2O晶体的电光效应和生长研究[J]. 人工晶体学报, 2023, 52(7): 1302-1307. |
[10] | 陈中舆, 程静欣, 陈怀熹, 冯新凯, 张新彬, 梁万国. 高性能Zn扩散掺镁LN晶体脊形波导器件的研究[J]. 人工晶体学报, 2022, 51(11): 1823-1829. |
[11] | 陈家颖, 张新彬, 陈怀熹, 冯新凯, 程星, 马磊, 梁万国. 一种通过梯形PPMgLN波导倍频实现带宽可调谐光源的理论研究[J]. 人工晶体学报, 2022, 51(11): 1830-1835. |
[12] | 高博锋, 任梦昕, 郑大怀, 兀伟, 蔡卫, 孙军, 孔勇发, 许京军. 铌酸锂的耄耋之路:历史与若干进展[J]. 人工晶体学报, 2021, 50(7): 1183-1199. |
[13] | 郑钧升, 刘璐芳, 潘陈馨钰, 郭欣, 童利民, 王攀. 基于非弹性电子隧穿的表面等离激元激发[J]. 人工晶体学报, 2021, 50(7): 1275-1286. |
[14] | 陈慧挺, 赫崇君, 朱俊, 李自强, 高慧芳, 路元刚. 铌锌酸铅-钛酸铅单晶的生长及性能[J]. 人工晶体学报, 2021, 50(3): 421-427. |
[15] | 李一村;舒国阳;刘刚;郝晓斌;赵继文;张森;刘康;曹文鑫;代兵;杨磊;朱嘉琦;曹康丽;韩杰才. MPCVD单晶金刚石初始及断续生长界面的表征与分析[J]. 人工晶体学报, 2020, 49(10): 1765-1769. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||