[1] ZHU L, ZENG W. Room-temperature gas sensing of ZnO-based gas sensor: a review[J]. Sensors and Actuators A: Physical, 2017, 267: 242-261. [2] CAO J C, CHEN Q, WANG X S, et al. Recent development of gas sensing platforms based on 2D atomic crystals[J]. Research, 2021, 330: 9863038. [3] HONG S, WU M L, HONG Y, et al. FET-type gas sensors: a review[J]. Sensors and Actuators B: Chemical, 2021, 330: 129240. [4] XIAO Z J, ZHOU W Y, ZHANG N, et al. All-carbon pressure sensors with high performance and excellent chemical resistance[J]. Small 2019, 15(13): e1804779. [5] NAZEMI H, JOSEPH A, PARK J, et al. Advanced micro- and nano-gas sensor technology: a review[J]. Sensors, 2019, 19(6): 1285. [6] DAI J, OGBEIDE O, MACADAM N, et al. Printed gas sensors[J]. Chemical Society Reviews, 2020, 49(6): 1756-1789. [7] DADKHAH M, TULLIANI J M. Green synthesis of metal oxides semiconductors for gas sensing applications[J]. Sensors, 2022, 22(13): 4669. [8] XUE M Q, LI F W, CHEN D, et al. High-oriented polypyrrole nanotubes for next-generation gas sensor[J]. Advanced Materials, 2016, 28(37): 8265-8270. [9] LOGHIN F C, FALCO A, SALMERON J F, et al. Fully transparent gas sensor based on carbon nanotubes[J]. Sensors, 2019, 19(20): 4591. [10] GUO S Y, HOU P X, ZHANG F, et al. Gas sensors based on single-wall carbon nanotubes[J]. Molecules, 2022, 27(17): 5381. [11] LIU X H, MA T T, PINNA N, et al. Two-dimensional nanostructured materials for gas sensing[J]. Advanced Functional Materials, 2017, 27(37): 1702168. [12] ZHANG L, KHAN K, ZOU J F, et al. Recent advances in emerging 2D material-based gas sensors: potential in disease diagnosis[J]. Advanced Materials Interfaces, 2019, 6(22): 1901329. [13] SUN Q, WANG J, WANG X, et al. Treatment-dependent surface chemistry and gas sensing behavior of the thinnest member of titanium carbide MXenes[J]. Nanoscale, 2020, 12(32): 16987-16994. [14] HJIRI M, BAHANAN F, AIDA M S, et al. High performance CO gas sensor based on ZnO nanoparticles[J].Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30(10): 4063-4071. [15] CHOI P G, IZU N, SHIRAHATA N, et al. Fabrication and H2-sensing properties of SnO2 nanosheet gas sensors[J]. ACS Omega, 2018, 3(11): 14592-14596. [16] YOUNG S J, LIN Z D. Ammonia gas sensors with Au-decorated carbon nanotubes[J]. Microsystem Technologies, 2018, 24(10): 4207-4210. [17] CHOI G J, MISHRA R K, GWAG J S. 2D layered MoS2 based gas sensor for indoor pollutant formaldehyde gas sensing applications[J]. Materials Letters, 2020, 264: 127385. [18] BHARATHI P, HARISH S, SHIMOMURA M, et al. Controlled growth and fabrication of edge enriched SnS2 nanostructures for room temperature NO2 gas sensor applications[J]. Materials Letters, 2023, 335: 133691. [19] LV R T, ROBINSON J A, SCHAAK R E, et al. Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets[J]. Accounts of Chemical Research, 2015, 48(1): 56-64. [20] LI J, SHEN J N, MA Z J, et al. Thickness-controlled electronic structure and thermoelectric performance of ultrathin SnS2 nanosheets[J]. Scientific Reports, 2017, 7(1): 8914. [21] SUN Q, WANG J X, HAO J Y, et al. SnS2/SnS p-n heterojunctions with an accumulation layer for ultrasensitive room-temperature NO2 detection[J]. Nanoscale, 2019, 11(29): 13741-13749. [22] SUN B Z, MA Z J, HE C, et al. Anisotropic thermoelectric properties of layered compounds in SnX2 (X=S, Se): a promising thermoelectric material[J]. Physical Chemistry Chemical Physics: PCCP, 2015, 17(44): 29844-29853. [23] ZUO Y, LIU Y P, LI J S, et al. Solution-processed ultrathin SnS2-Pt nanoplates for photoelectrochemical water oxidation[J]. ACS Applied Materials & Interfaces, 2019, 11(7): 6918-6926. [24] ALI HOSSEINI S, ESFANDIAR A, IRAJI ZAD A, et al. High-photoresponsive backward diode by two-dimensional SnS2/silicon heterostructure[J]. ACS Photonics, 2019, 6(3): 728-734. [25] GU D, WANG X Y, LIU W, et al. Visible-light activated room temperature NO2 sensing of SnS2 nanosheets based chemiresistive sensors[J]. Sensors and Actuators B: Chemical, 2020, 305: 127455. [26] GU L Y, LEI Y, LUO J, et al. Reducing the Schottky barrier by SnS2 underlayer modification to enhance photoelectric performance: the case of Ag2S/FTO[J]. ACS Applied Materials & Interfaces, 2019, 11(27): 24789-24794. [27] LI J H, HAN S B, ZHANG C Y, et al. High-performance and reactivation characteristics of high-quality, graphene-supported SnS2 heterojunctions for a lithium-ion battery anode[J]. ACS Applied Materials & Interfaces, 2019, 11(25): 22314-22322. [28] ZHANG F, DING T, ZHANG Y C, et al. Polyaniline modified SnS2 as a novel efficient visible-light-driven photocatalyst[J]. Materials Letters, 2017, 192: 149-152. [29] SUN J, XIONG W, ZHANG J W, et al. SnS2 nanoparticle-based gas sensor with highly sensitive NO2 detection at room temperature[J]. Materials Letters, 2022, 308: 131214. [30] ZHOU X, ZHANG Q, GAN L, et al. Large-size growth of ultrathin SnS2 nanosheets and high performance for phototransistors[J]. Advanced Functional Materials, 2016, 26(24): 4405-4413. [31] YIN L X, CHENG R L, SONG Q, et al. Construction of nanoflower SnS2 anchored on g-C3N4 nanosheets composite as highly efficient anode for lithium ion batteries[J]. Electrochimica Acta, 2019, 293: 408-418. [32] YANG Z, SU C, WANG S T, et al. Highly sensitive NO2 gas sensors based on hexagonal SnS2 nanoplates operating at room temperature[J]. Nanotechnology, 2020, 31(7): 075501. [33] SHI W D, HUO L H, WANG H S, et al. Hydrothermal growth and gas sensing property of flower-shaped SnS2 nanostructures[J]. Nanotechnology, 2006, 17(12): 2918-2924. [34] KWON K C, SUH J M, LEE T H, et al. SnS2 nanograins on porous SiO2 nanorods template for highly sensitive NO2 sensor at room temperature with excellent recovery[J]. ACS Sensors, 2019, 4(3): 678-686. [35] WU R Z, HAO J Y, WANG T T, et al. Carbon-doping-induced energy-band modification and vacancies in SnS2 nanosheets for room-temperature ppb-level NO2 detection[J]. Inorganic Chemistry Frontiers, 2021, 8(23): 5006-5015. [36] LIU Y, ZHOU Y S, ZHOU X, et al. Cu doped SnS2 nanostructure induced sulfur vacancy towards boosted photocatalytic hydrogen evolution[J]. Chemical Engineering Journal, 2021, 407: 127180. [37] SUN Q, GONG Z M, ZHANG Y J, et al. Synergically engineering defect and interlayer in SnS2 for enhanced room-temperature NO2 sensing[J]. Journal of Hazardous Materials, 2022, 421: 126816. [38] QIN Z Y, XU K, YUE H C, et al. Enhanced room-temperature NH3 gas sensing by 2D SnS2 with sulfur vacancies synthesized by chemical exfoliation[J]. Sensors and Actuators B: Chemical, 2018, 262: 771-779. [39] OU J Z, GE W Y, CAREY B, et al. Physisorption-based charge transfer in two-dimensional SnS2 for selective and reversible NO2 gas sensing[J]. ACS Nano, 2015, 9(10): 10313-10323. [40] KIM Y H, PHAN D T, AHN S, et al. Two-dimensional SnS2 materials as high-performance NO2 sensors with fast response and high sensitivity[J]. Sensors and Actuators B: Chemical, 2018, 255: 616-621. [41] LIU D, TANG Z L, ZHANG Z T. Nanoplates-assembled SnS2 nanoflowers for ultrasensitive ppb-level NO2 detection[J]. Sensors and Actuators B: Chemical, 2018, 273: 473-479. [42] XIONG Y, XU W W, DING D G, et al. Ultra-sensitive NH3 sensor based on flower-shaped SnS2 nanostructures with sub-ppm detection ability[J]. Journal of Hazardous Materials, 2018, 341: 159-167. [43] ZHANG Q X, MA S Y, YANG G J, et al. 3D SnS2 hierarchical micro-flowers synthesized by ZnSn(OH)6 for ultra-sensitive NH3 sensor[J]. Materials Letters, 2019, 236: 600-603. [44] ARAFAT M M, DINAN B, AKBAR S A, et al. Gas sensors based on one dimensional nanostructured metal-oxides: a review[J]. Sensors, 2012, 12(6): 7207-7258. [45] FAN S W, SRIVASTAVA A K, DRAVID V P. UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO[J]. Applied Physics Letters, 2009, 95(14): 142106. [46] HUANG Q W, TIAN S Q, ZENG D W, et al. Enhanced photocatalytic activity of chemically bonded TiO2/graphene composites based on the effective interfacial charge transfer through the C-Ti bond[J]. ACS Catalysis, 2013, 3(7): 1477-1485. [47] ZHOU J, GU Y D, HU Y F, et al. Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization[J]. Applied Physics Letters, 2009, 94(19): 191103. [48] EOM T H, CHO S H, SUH J M, et al. Substantially improved room temperature NO2 sensing in 2-dimensional SnS2 nanoflowers enabled by visible light illumination[J]. Journal of Materials Chemistry A, 2021, 9(18): 11168-11178. [49] BHATI V S, KUMAR M, BANERJEE R. Gas sensing performance of 2D nanomaterials/metal oxide nanocomposites: a review[J]. Journal of Materials Chemistry C, 2021, 9(28): 8776-8808. [50] MIN Y, IM E, HWANG G T, et al. Heterostructures in two-dimensional colloidal metal chalcogenides: synthetic fundamentals and applications[J]. Nano Research, 2019, 12(8): 1750-1769. [51] WANG T T, WANG Y, FAN W Q, et al. Boosting room-temperature NO2 detection via in-situ interfacial engineering on Ag2S/SnS2 heterostructures[J]. Journal of Hazardous Materials, 2022, 434: 128782. [52] LIU L J, IKRAM M, MA L F, et al. Edge-exposed MoS2 nanospheres assembled with SnS2 nanosheet to boost NO2 gas sensing at room temperature[J]. Journal of Hazardous Materials, 2020, 393: 122325. |