[1] CHENG J, ZHOU J H, LIU J Z, et al. Physicochemical characterizations and desulfurization properties in coal combustion of three calcium and sodium industrial wastes[J]. Energy & Fuels, 2009, 23(5): 2506-2516. [2] 李彦鑫, 张金山, 曹永丹, 等. 电石渣的理化性质表征及其应用研究[J]. 无机盐工业, 2018, 50(4): 49-52. LI Y X, ZHANG J S, CAO Y D, et al. Characterization of physiochemical property of carbide slag and its application study[J]. Inorganic Chemicals Industry, 2018, 50(4): 49-52 (in Chinese). [3] YANG H, CAO J W, WANG Z, et al. Discovery of impurities existing state in carbide slag by chemical dissociation[J]. International Journal of Mineral Processing, 2014, 130: 66-73. [4] 董永刚, 曹建新, 刘 飞, 等. 电石渣理化性质的分析与表征[J]. 环境科学与技术, 2008, 31(9): 95-98. DONG Y G, CAO J X, LIU F, et al. Analysis and characterization of physiochemical property of carbide slag[J]. Environmental Science & Technology, 2008, 31(9): 95-98 (in Chinese). [5] 孔祥波. 超微细无定形碳酸钙粉体的制备、改性及其应用[D]. 厦门: 厦门大学, 2017. KONG X B. The preparation, modification of superfine amorphous calcium carbonate and its application[D]. Xiamen: Xiamen University, 2017 (in Chinese). [6] 冯文华. 纳米碳酸钙制备新工艺研究[D]. 上海: 华东理工大学, 2015. FENG W H. Study on preparing new technology for nano calcium carbonate[D]. Shanghai: East China University of Science and Technology, 2015 (in Chinese). [7] 郭琳琳, 范小振, 张文育, 等. 电石渣制备高附加值碳酸钙的研究进展[J]. 化工进展, 2017, 36(1): 364-371. GUO L L, FAN X Z, ZHANG W Y, et al. Research progress on preparation of calcium carbonate with carbide slag[J]. Chemical Industry and Engineering Progress, 2017, 36(1): 364-371 (in Chinese). [8] 王倩倩. 碳酸钙矿物的晶型调控试验研究[D]. 包头: 内蒙古科技大学, 2020. WANG Q Q. Study on crystal regulation of calcium carbonate mineral[D]. Baotou: Inner Mongolia University of Science & Technology, 2020 (in Chinese). [9] NIU Y Q, LIU J H, AYMONIER C, et al. Calcium carbonate: controlled synthesis, surface functionalization, and nanostructured materials[J]. Chemical Society Reviews, 2022, 51(18): 7883-7943. [10] CHONG K Y, CHIA C H, ZAKARIA S, et al. Vaterite calcium carbonate for the adsorption of Congo red from aqueous solutions[J]. Journal of Environmental Chemical Engineering, 2014, 2(4): 2156-2161. [11] 石 闯. 利用电石渣制备超细活性碳酸钙的技术与机理[D]. 北京: 中国地质大学(北京), 2016. SHI C. Thetechnology and mechanism of the preparation of superfine active calcium carbonate by using carbide slag[D]. Beijing: China University of Geosciences, 2016 (in Chinese). [12] 马蓝宇. 碳酸钙微粒的形貌控制与应用[D]. 柳州: 广西科技大学, 2017. MA L Y. Morphology control and application of calcium carbonate particles[D]. Liuzhou: Guangxi University of Science and Technology, 2017 (in Chinese). [13] 张克南. 利用电石渣制备纳米碳酸钙的工艺与机理研究[D]. 北京: 中国地质大学(北京), 2017. ZHANG K N. The technology and mechanism of the preparation of nanometer calcium carbonate by using carbide slag[D]. Beijing: China University of Geosciences, 2017 (in Chinese). [14] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 纳米碳酸钙: GB/T 19590—2011[S]. 北京: 中国标准出版社, 2011. General Administration of Quality Supervision, Inspection and Quarantine, China National Standardization Administration. Nano calcium carbonate: GB/T 19590—2011[S]. Beijing: China Standards Press, 2011 (in Chinese). [15] 杨春玲. 纳米碳酸钙的制备及粒径、形貌控制[D]. 上海: 东华大学, 2014. YANG C L. Preparation of nano-CaCO3 and size, morphology control[D]. Shanghai: Donghua University, 2014 (in Chinese). [16] 颜 鑫, 周继承, 邓新云. 纳米碳酸钙四大纳米效应应用表现[J]. 化工文摘, 2008(4): 44-47. YAN X, ZHOU J C, DENG X Y. Application of the four big effects of nano-CaCO3[J]. China Chemicals, 2008(4): 44-47 (in Chinese). [17] 闫 静. 纳米碳酸钙的制备条件优化及碳化结晶过程研究[D]. 杭州: 浙江工业大学, 2013. YAN J. Study on preparation conditions of nano-CaCO3 and the carbonization-crystallization process[D]. Hangzhou: Zhejiang University of Technology, 2013 (in Chinese). [18] 姚守信. 生产轻质碳酸钙用碳化塔结构的实验研究[J]. 无机盐工业, 1997, 29(6): 37-38. YAO S X. Experimental study on the structure of carbonization tower for producing light calcium carbonate[J]. Inorganic Chemicals Industry, 1997, 29(6): 37-38 (in Chinese). [19] 赵立文, 朱干宇, 李少鹏, 等. 电石渣特性及综合利用研究进展[J]. 洁净煤技术, 2021, 27(3): 13-26. ZHAO L W, ZHU G Y, LI S P, et al. Research progress on characteristics and comprehensive utilization of calcium carbide slag[J]. Clean Coal Technology, 2021, 27(3): 13-26 (in Chinese). [20] 林 倩, 王晓芳, 曹建新, 等. 电石渣制备纳米碳酸钙的初步研究[J]. 贵州化工, 2006, 31(3): 5-7. LIN Q, WANG X F, CAO J X, et al. Preparation of nanosized calcium carbonate from calcium carbide residue[J]. Guizhou Chemical Industry, 2006, 31(3): 5-7 (in Chinese). [21] PRAH J, MAČEK J, DRAIČ G. Precipitation of calcium carbonate from a calcium acetate and ammonium carbamate batch system[J]. Journal of Crystal Growth, 2011, 324(1): 229-234. [22] KEZUKA Y, KUMA Y, NAKAI S, et al. Calcium carbonate chain-like nanoparticles: synthesis, structural characterization, and dewaterability[J]. Powder Technology, 2018, 335: 195-203. [23] 郭琳琳, 王 瑜, 冯 爽, 等. NH4Cl和HCl溶液浸取电石渣制备多晶型CaCO3[J]. 化学研究与应用, 2020, 32(1): 91-98. GUO L L, WANG Y, FENG S, et al. Preparation of polymorph CaCO3 with carbide slag leached by NH4Cl and HCl solution[J]. Chemical Research and Application, 2020, 32(1): 91-98 (in Chinese). [24] WANG X L, MAROTO-VALER M M. Dissolution of serpentine using recyclable ammonium salts for CO2 mineral carbonation[J]. Fuel, 2011, 90(3): 1229-1237. [25] WANG Y J, YE B F, HONG Z C, et al. Uniform calcite mircro/nanorods preparation from carbide slag using recyclable citrate extractant[J]. Journal of Cleaner Production, 2020, 253: 119930. [26] ZHENG X, LIU J Y, WEI Y B, et al. Glycine-mediated leaching-mineralization cycle for CO2 sequestration and CaCO3 production from coal fly ash: dual functions of glycine as a proton donor and receptor[J]. Chemical Engineering Journal, 2022, 440: 135900. [27] HU J P, LIU W Z, WANG L, et al. Indirect mineral carbonation of blast furnace slag with (NH4)2SO4 as a recyclable extractant[J]. Journal of Energy Chemistry, 2017, 26(5): 927-935. [28] JO H, PARK S H, JANG Y N, et al. Metal extraction and indirect mineral carbonation of waste cement material using ammonium salt solutions[J]. Chemical Engineering Journal, 2014, 254: 313-323. [29] ZHANG N, CHAI Y E, SANTOS R M, et al. Advances in process development of aqueous CO2 mineralisation towards scalability[J]. Journal of Environmental Chemical Engineering, 2020, 8(6): 104453. [30] SAID A, MATTILA H P, JÄRVINEN M, et al. Production of precipitated calcium carbonate (PCC) from steelmaking slag for fixation of CO2[J]. Applied Energy, 2013, 112: 765-771. [31] 郭琳琳, 徐 美, 刘博静, 等. 氯化铵浸取电石渣制备碳酸钙研究[J]. 应用化工, 2017, 46(9): 1757-1760. GUO L L, XU M, LIU B J, et al. Preparation of calcium carbonate with carbide slag leached by ammonium chloride[J]. Applied Chemical Industry, 2017, 46(9): 1757-1760 (in Chinese). [32] LIENDO F, ARDUINO M, DEORSOLA F A, et al. Factors controlling and influencing polymorphism, morphology and size of calcium carbonate synthesized through the carbonation route: a review[J]. Powder Technology, 2022, 398: 117050. [33] SVENSKAYA Y I, FATTAH H, INOZEMTSEVA O A, et al. Key parameters for size- and shape-controlled synthesis of vaterite particles[J]. Crystal Growth & Design, 2018, 18(1): 331-337. [34] DOMINGO C, LOSTE E, GÓMEZ-MORALES J, et al. Calcite precipitation by a high-pressure CO2 carbonation route[J]. The Journal of Supercritical Fluids, 2006, 36(3): 202-215. [35] GARCÍA CARMONA J, GÓMEZ MORALES J, RODRÍGUEZ CLEMENTE R. Rhombohedral-scalenohedral calcite transition produced by adjusting the solution electrical conductivity in the system Ca(OH)2-CO2-H2O[J]. Journal of Colloid and Interface Science, 2003, 261(2): 434-440. [36] PLUMMER L N, BUSENBERG E. The solubilities of calcite, aragonite and vaterite in CO2-H2O solutions between 0 and 90 ℃, and an evaluation of the aqueous model for the system CaCO3-CO2-H2O[J]. Geochimica et Cosmochimica Acta, 1982, 46(6): 1011-1040. [37] NJEGIĆDAKULA D B, FERMANI D S, DUBINSKY P Z, et al. In vitro coral biomineralization under relevant aragonite supersaturation conditions[J]. Chemistry-A European Journal, 2019, 25(45): 10616-10624. [38] 陈 超, 王智宇. 二氧化钛纳米棒的制备及其晶体生长机理分析[J]. 无机材料学报, 2012, 27(1): 45-48. CHEN C, WANG Z Y. Synthesis and crystal growth mechanism of titanium dioxide nanorods[J]. Journal of Inorganic Materials, 2012, 27(1): 45-48 (in Chinese). [39] 陈 瀛, 宫斯宁, 何光辉, 等. 银纳米颗粒结晶形态形成机理研究[J]. 人工晶体学报, 2010, 39(6): 1401-1405. CHEN Y, GONG S N, HE G H, et al. Study on the crystalline morphology formation of silver nanoparticle[J]. Journal of Synthetic Crystals, 2010, 39(6): 1401-1405 (in Chinese). [40] 张 燕, 吴国杰, 崔英德. 棒状纳米碳酸钙的制备[J]. 材料导报, 2011, 25(20): 83-85. ZHANG Y, WU G J, CUI Y D. Preparation of stick-like nano-CaCO3[J]. Materials Review, 2011, 25(20): 83-85 (in Chinese). [41] WANG M, ZOU H K, SHAO L, et al. Controlling factors and mechanism of preparing needlelike CaCO3 under high-gravity environment[J]. Powder Technology, 2004, 142(2/3): 166-174. [42] PARK W K, KO S J, LEE S W, et al. Effects of magnesium chloride and organic additives on the synthesis of aragonite precipitated calcium carbonate[J]. Journal of Crystal Growth, 2008, 310(10): 2593-2601. [43] SONG K, KIM W, BANG J H, et al. Polymorphs of pure calcium carbonate prepared by the mineral carbonation of flue gas desulfurization gypsum[J]. Materials & Design, 2015, 83: 308-313. [44] KONOPACKA-ŁYSKAWA D, KOŚCIELSKA B, ŁAPIŃSKI M. Precipitation of spherical vaterite particles via carbonation route in the bubble column and the gas-lift reactor[J]. JOM, 2019, 71(3): 1041-1048. [45] AHN J H, CHOI K S, KIM H, et al. Synthesis of aragonite by the carbonation process using stainless refining dust in iron & steel plants[J]. Developments in Mineral Processing, 2000, 13: C6-29. [46] BARHOUM A, RAHIER H, ABOU-ZAIED R E, et al. Effect of cationic and anionic surfactants on the application of calcium carbonate nanoparticles in paper coating[J]. ACS Applied Materials & Interfaces, 2014, 6(4): 2734-2744. [47] ZHANG C X, ZHANG J L, FENG X Y, et al. Influence of surfactants on the morphologies of CaCO3 by carbonation route with compressed CO2[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 324(1/2/3): 167-170. [48] 程 娜, 周梅芳, 陈鹏宇, 等. 碳化法可控制备纳米碳酸钙研究进展[J]. 过程工程学报, 2017, 17(2): 412-419. CHENG N, ZHOU M F, CHEN P Y, et al. Controlled synthesis of nano-calcium carbonate via carbonization method: a review[J]. The Chinese Journal of Process Engineering, 2017, 17(2): 412-419 (in Chinese). [49] Van der HOUWEN J A M, CRESSEY G, CRESSEY B A, et al. The effect of organic ligands on the crystallinity of calcium phosphate[J]. Journal of Crystal Growth, 2003, 249(3/4): 572-583. [50] 魏 杰, 李玉宝, 陈维琼, 等. 纳米级类骨磷灰石晶体的研制[J]. 功能材料, 2003, 34(4): 471-472. WEI J, LI Y B, CHEN W Q, et al. Study on bone-like nano-apatite crystals[J]. Journal of Functional Materials, 2003, 34(4): 471-472 (in Chinese). [51] 徐大瑛, 耿文娟, 钱德全, 等. 几种糖类物质对纳米碳酸钙结晶的影响[J]. 无机盐工业, 2021, 53(11): 77-80. XU D Y, GENG W J, QIAN D Q, et al. Influence of several carbohydrates on crystallization of nano calcium carbonate[J]. Inorganic Chemicals Industry, 2021, 53(11): 77-80 (in Chinese). [52] COOKE D J, GRAY R J, SAND K K, et al. Interaction of ethanol and water with the{1014}surface of calcite[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2010, 26(18): 14520-14529. [53] 古卫乐. 碳酸钙原位表面改性过程晶型调控及在超疏水涂层中应用研究[D]. 武汉: 湖北大学, 2022. GU W L. Study on crystal shape regulation during In-situ modification of calcium carbonate and its application in hydrophobic coating[D]. Wuhan: Hubei University, 2022 (in Chinese). [54] GEBAUER D, VÖLKEL A, CÖLFEN H. Stable prenucleation calcium carbonate clusters[J]. Science, 2008, 322(5909): 1819-1822. [55] 宋 阳. 有机小分子诱导结晶的晶型、晶习调控及机理研究[D]. 广州: 华南理工大学, 2021. SONG Y. The study on the mechanism and regulation of induced-crystallization of small organic molecules[D]. Guangzhou: South China University of Technology, 2021 (in Chinese). [56] 马在强. 碳酸钙晶型调控及机理研究[D]. 大庆: 东北石油大学, 2019. MA Z Q. Controllable synthesis of CaCO3 polymorphs and investigation on growth mechanism[D]. Daqing: Northeast Petroleum University, 2019 (in Chinese). [57] YU S H. Bio-inspired crystal growth by synthetic templates[M]//Biomineralization II. Heidelberg: Springer, 2006: 79-118. [58] ZHENG T W, YI H H, ZHANG S Y, et al. Preparation and formation mechanism of calcium carbonate hollow microspheres[J]. Journal of Crystal Growth, 2020, 549: 125870. [59] DE YOREO J J, GILBERT P U P A, SOMMERDIJK N A J M, et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments[J]. Science, 2015, 349(6247): aaa6760. [60] 林宏毅. 表面调控纳米碳酸钙晶型构建机制及其在电石渣回收过程中的应用[D]. 福州: 福州大学, 2016. LIN H Y. Surface controlling mechanism of nanocrystalline calcium carbonate crystallization and its application in recycling of carbide slag[D]. Fuzhou: Fuzhou University, 2016 (in Chinese). |