[1] BHUIYAN A G, HASHIMOTO A, YAMAMOTO A. Indium nitride (InN): a review on growth, characterization, and properties[J]. Journal of Applied Physics, 2003, 94(5): 2779-2808. [2] AMBACHER O. Thermal stability and desorption of Group III nitrides prepared by metal organic chemical vapor deposition[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 1996, 14(6): 3532. [3] OSAMURA K, NAKAJIMA K, MURAKAMI Y, et al. Fundamental absorption edge in GaN, InN and their alloys[J]. Solid State Communications, 1972, 11(5): 617-621. [4] TANSLEY T L, FOLEY C P. Optical band gap of indium nitride[J]. Journal of Applied Physics, 1986, 59(9): 3241-3244. [5] WESTRA K L, LAWSON R P W, BRETT M J. The effects of oxygen contamination on the properties of reactively sputtered indium nitride films[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1988, 6(3): 1730-1732. [6] IKUTA K, INOUE Y, TAKAI O. Optical and electrical properties of InN thin films grown on ZnO/α-Al2O3 by RF reactive magnetron sputtering[J]. Thin Solid Films, 1998, 334(1/2): 49-53. [7] TYAGAI VA, EVSTIGNEEV AM, KRASIKO AN, et al. Optical-properties of indium nitride films[J]. Sov Phys Semicond, 1977, 11: 1257. [8] PUYCHEVRIER N, MENORET M. Synthesis of III-V semiconductor nitrides by reactive cathodic sputtering[J]. Thin Solid Films, 1976, 36(1): 141-145. [9] GUO Q X, YOSHIDA A. Temperature dependence of band gap change in InN and AlN[J]. Japanese Journal of Applied Physics, 1994, 33(5R): 2453. [10] WETZEL C, TAKEUCHI T, YAMAGUCHI S, et al. Optical band gap in Ga1-xInxN (0<x<0.2) on GaN by photoreflection spectroscopy[J]. Applied Physics Letters, 1998, 73(14): 1994-1996. [11] YODO T, ANDO H, NOSEI D, et al. Growth and characterization of InN heteroepitaxial layers grown on Si substrates by ECR-assisted MBE[J]. Physica Status Solidi (b), 2001, 228(1): 21-26. [12] DAVYDOV V Y, KLOCHIKHIN A A, SEISYAN R P, et al. Absorption and emission of hexagonal InN. Evidence of narrow fundamental band gap[J]. Physica Status Solidi (b), 2002, 229(3): r1-r3. [13] DAVYDOV V Y, KLOCHIKHIN A A, EMTSEV V V, et al. Band gap of InN and In-rich InxGa1-xN alloys (0.36<x<1)[J]. Physica Status Solidi (b), 2002, 230(2): R4-R6. [14] WU J, WALUKIEWICZ W, YU K M, et al. Unusual properties of the fundamental band gap of InN[J]. Applied Physics Letters, 2002, 80(21): 3967-3969. [15] HOSHINO T, MORI N. Electron mobility calculation for two-dimensional electron gas in InN/GaN digital alloy channel high electron mobility transistors[J]. Japanese Journal of Applied Physics, 2019, 58(SC): SCCD10. [16] LAI W J, LI S S, LIN C C, et al. Near infrared photodetector based on polymer and indium nitride nanorod organic/inorganic hybrids[J]. Scripta Materialia, 2010, 63(6): 653-656. [17] BEN AFKIR N, FEDDI E, DUJARDIN F, et al. Photovoltaic conversion efficiency of InN/InxGa1-xN quantum dot intermediate band solar cells[J]. Physica B: Condensed Matter, 2018, 534: 10-16. [18] LIN W, LI S P, KANG J Y. Near-ultraviolet light emitting diodes using strained ultrathin InN/GaN quantum well grown by metal organic vapor phase epitaxy[J]. Applied Physics Letters, 2010, 96(10): 101115. [19] KALESAKI E, KIOSEOGLOU J, LYMPERAKIS L, et al. Effect of edge threading dislocations on the electronic structure of InN[J]. Applied Physics Letters, 2011, 98(7): 072103. [20] STAMPFL C, VAN DE WALLE C G, VOGEL D, et al. Native defects and impurities in InN: first-principles studies using the local-density approximation and self-interaction and relaxation-corrected pseudopotentials[J]. Physical Review B, 2000, 61(12): R7846-R7849. [21] CHALY V P, BORISOV B A, DEMIDOV D M, et al. Indium droplet formation during molecular beam epitaxy of InGaN[J]. Journal of Crystal Growth, 1999, 206(1/2): 147-149. |