[1] DENKER B I, GALAGAN B I, SVERCHKOV S E, et al. Erbium (Er) glass lasers[M]//Handbook of Solid-State Lasers. Amsterdam: Elsevier, 2013: 341-358. [2] SETZLER S D, FRANCIS M P, YOUNG Y E, et al. Resonantly pumped eyesafe erbium lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11(3): 645-657. [3] LAPORTA P, TACCHEO S, LONGHI S, et al. Erbium-ytterbium microlasers: optical properties and lasing characteristics[J]. Optical Materials, 1999, 11(2/3): 269-288. [4] TOLSTIK N A, KISEL V E, KULESHOV N V, et al. Er, Yb∶YAl3(BO3)4—efficient 1.5 μm laser crystal[J]. Applied Physics B, 2009, 97(2): 357-362. [5] CHEN Y J, LIN Y F, YANG Z M, et al. Eye-safe 1.55 μm Er∶Yb∶YAl3(BO3)4 microchip laser[J]. OSA Continuum, 2019, 2(1): 142-150. [6] WU G D, FAN M D, JIANG C, et al. Noncentrosymmetric orthophosphate YM3(PO4)3 (M=Sr, Ba) crystals: single crystal growth, structure, and properties[J]. Crystal Growth & Design, 2020, 20(4): 2390-2397. [7] WU G D, FAN M D, YU F P, et al. Growth, thermal, and spectroscopic properties of YbBa3(PO4)3 single crystal: a new stoichiometric lasing material[J]. Crystal Growth & Design, 2020, 20(12): 7963-7971. [8] WU G D, YIN X Q, FAN M D, et al. Nd-doped structurally disordered YSr3(PO4)3 single crystal: growth and laser performances[J]. Journal of Rare Earths, 2021, 39(12): 1540-1546. [9] YIN X Q, WU G D, FAN S Z, et al. All-solid-state widely wavelength-tunable and high-efficiency Yb∶YSr3(PO4)3 laser[J]. Applied Optics, 2021, 60(22): 6713-6718. [10] YIN X Q, FAN S Z, ZHANG X Y, et al. Active and passive Q-switching operation of 1 μm Yb∶YSP laser with an optical chopper/AOM and MoWS2 nanosheets[J]. Laser Physics, 2022, 32(12): 125801. [11] HUANG J H, WU J, CHEN Y J, et al. Spectral and laser properties of Er∶Yb∶Ba3Gd(PO4)3 crystal at 1.5-1.6 μm[J]. Optical Materials Express, 2022, 12(4): 1433-1441. [12] TSUBOI T. Absorption spectra due to the transitions of ions in crystals[J]. Journal of Physics: Condensed Matter, 1998, 10(40): 9155-9159. [13] HEHLEN M P, BRIK M G, KRÄMER K W. 50th anniversary of the Judd-Ofelt theory: an experimentalist’s view of the formalism and its application[J]. Journal of Luminescence, 2013, 136: 221-239. [14] AULL B, JENSSEN H. Vibronic interactions in Nd∶YAG resulting in nonreciprocity of absorption and stimulated emission cross sections[J]. IEEE Journal of Quantum Electronics, 1982, 18(5): 925-930. [15] SUMIDA D S, FAN T Y. Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media[J]. Optics Letters, 1994, 19(17): 1343-1345. [16] TACCHEO S, LAPORTA P, SVELTO C. Widely tunable single-frequency erbium-ytterbium phosphate glass laser[J]. Applied Physics Letters, 1996, 68(19): 2621-2623. [17] WEBER R, NEUENSCHWANDER B, MAC DONALD M, et al. Cooling schemes for longitudinally diode laser-pumped Nd∶YAG rods[J]. IEEE Journal of Quantum Electronics, 1998, 34(6): 1046-1053. [18] FAN T Y, BYER R L. Diode laser-pumped solid-state lasers[J]. IEEE Journal of Quantum Electronics, 1988, 24(6): 895-912. |