[1] TIAN A Q, HU L, ZHANG L Q, et al. Design and growth of GaN-based blue and green laser diodes[J]. Science China Materials, 2020, 63(8): 1348-1363. [2] LUTGEN S, AVRAMESCU A, LERMER T, et al. Progress of blue and green InGaN laser diodes[C]//SPIE OPTO. Proc SPIE 7616, Novel in-Plane Semiconductor Lasers Ⅸ, San Francisco, California, USA. 2010, 7616: 89-96. [3] 李方直, 胡 磊, 田爱琴, 等. GaN基蓝绿光激光器发展现状与未来发展趋势[J]. 人工晶体学报, 2020, 49(11): 1996-2012. LI F Z, HU L, TIAN A Q, et al. Current status and future trends of GaN-based blue and green laser diodes[J]. Journal of Synthetic Crystals, 2020, 49(11): 1996-2012 (in Chinese). [4] PIPREK J. Analysis of efficiency limitations in high-power InGaN/GaN laser diodes[J]. Optical and Quantum Electronics, 2016, 48(10): 471. [5] RARING J W, SCHMIDT M C, POBLENZ C, et al. High-efficiency blue and true-green-emitting laser diodes based on non-c-plane oriented GaN substrates[J]. Applied Physics Express, 2010, 3(11): 112101. [6] CHANG J Y, CHANG Y A, CHEN F M, et al. Improved quantum efficiency in green InGaN light-emitting diodes with InGaN barriers[J]. IEEE Photonics Technology Letters, 2013, 25(1): 55-58. [7] SIZOV D, BHAT R, ZAH C E. Gallium indium nitride-based green lasers[J]. Journal of Lightwave Technology, 2012, 30(5): 679-699. [8] KUO Y K, CHANG J Y, TSAI M C, et al. Advantages of blue InGaN multiple-quantum well light-emitting diodes with InGaN barriers[J]. Applied Physics Letters, 2009, 95(1): 011116. [9] YANG J, ZHAO D G, LIU Z, et al. Suppression the leakage of optical field and carriers in GaN-based laser diodes by using InGaN barrier layers[J]. IEEE Photonics Journal, 2018, 10(4): 1-7. [10] ZHOU K, IKEDA M, LIU J P, et al. Remarkably reduced efficiency droop by using staircase thin InGaN quantum barriers in InGaN based blue light emitting diodes[J]. Applied Physics Letters, 2014, 105(17): 173510. [11] RYOU J H, YODER P D, LIU J P, et al. Control of quantum-confined stark effect in InGaN-based quantum wells[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(4): 1080-1091. [12] 尹瑞梅, 贾 伟, 董海亮, 等. (101)面InGaN量子阱中的静电场反转对蓝光发光二极管光电性能的影响[J]. 光学学报, 2022, 42(21): 2125001. YIN R M, JIA W, DONG H L, et al. Effect of electrostatic field inversion in 101-plane InGaN quantum wells on photoelectric properties of blue light-emitting diodes[J]. Acta Optica Sinica, 2022, 42(21): 2125001 (in Chinese). [13] BEN Y H, LIANG F, ZHAO D G, et al. The role of InGaN quantum barriers in improving the performance of GaN-based laser diodes[J]. Optics & Laser Technology, 2022, 145: 107523. [14] LU T P, MA Z G, DU C H, et al. Improvement of light power and efficiency droop in GaN-based LEDs using graded InGaN hole reservoir layer[J]. Applied Physics A, 2014, 114(4): 1055-1059. [15] HOU Y F, ZHAO D G, LIANG F, et al. Characteristics of InGaN-based green laser diodes with additional InGaN hole reservoir layer[J]. Vacuum, 2021, 186: 110049. [16] LI T, CAO G L, MAO W, et al. Origin of GaN-InGaN-GaN barriers in enhancing the hole injection for InGaN/GaN green light-emitting diodes[J]. Superlattices and Microstructures, 2020, 146: 106649. [17] MEYAARD D S, LIN G B, SHAN Q F, et al. Asymmetry of carrier transport leading to efficiency droop in GaInN based light-emitting diodes[J]. 2012: JW3L.2. [18] DAVID A, GRUNDMANN M J, KAEDING J F, et al. Carrier distribution in (0001)InGaN/GaN multiple quantum well light-emitting diodes[J]. Applied Physics Letters, 2008, 92(5): 053502. [19] VURGAFTMAN I, MEYER J R, RAM-MOHAN L R. Band parameters for Ⅲ-Ⅴ compound semiconductors and their alloys[J]. Journal of Applied Physics, 2001, 89(11): 5815-5875. [20] FIORENTINI V, BERNARDINI F, AMBACHER O. Evidence for nonlinear macroscopic polarization in Ⅲ-Ⅴ nitride alloy heterostructures[J]. Applied Physics Letters, 2002, 80(7): 1204-1206. [21] HAGER T, BRÜDERL G, LERMER T, et al. Current dependence of electro-optical parameters in green and blue (AlIn)GaN laser diodes[J]. Applied Physics Letters, 2012, 101(17): 171109. [22] STRITE S. GaN, AlN, and InN: a review[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 1992, 10(4): 1237. [23] SHIH Y H, CHANG J Y, SHEU J K, et al. Design of hole-blocking and electron-blocking layers in AlxGa1-xN-based UV light-emitting diodes[J]. IEEE Transactions on Electron Devices, 2016, 63(3): 1141-1147. [24] CHU C S, TIAN K K, CHE J M, et al. On the origin of enhanced hole injection for AlGaN-based deep ultraviolet light-emitting diodes with AlN insertion layer in p-electron blocking layer[J]. Optics Express, 2019, 27(12): A620-A628. [25] MNATSAKANOV T T, LEVINSHTEIN M E, POMORTSEVA L I, et al. Carrier mobility model for GaN[J]. Solid-State Electronics, 2003, 47(1): 111-115. [26] KIM D J, MOON Y T, SONG K M, et al. Structural and optical properties of InGaN/GaN multiple quantum wells: the effect of the number of InGaN/GaN pairs[J]. Journal of Crystal Growth, 2000, 221(1/2/3/4): 368-372. [27] ZHANG Z H, HUANG CHEN S W, ZHANG Y H, et al. Hole transport manipulation to improve the hole injection for deep ultraviolet light-emitting diodes[J]. ACS Photonics, 2017, 4(7): 1846-1850. |