[1] MIELKE A. Exact ground states for the Hubbard model on the Kagome lattice[J]. Journal of Physics A: Mathematical and General, 1992, 25(16): 4335-4345. [2] BRUCH L W. Band-structure effects in the specific heat of helium adsorbed on graphite: perturbation theory[J]. Physical Review B, 1981, 23(12): 6801-6804. [3] CASTRO NETO A H, GUINEA F, PERES N M R, et al. The electronic properties of graphene[J]. Reviews of Modern Physics, 2009, 81(1): 109-162. [4] ZHOU S Y, GWEON G H, GRAF J, et al. First direct observation of Dirac fermions in graphite[J]. Nature Physics, 2006, 2(9): 595-599. [5] MIELKE A. Ferromagnetic ground states for the Hubbard model on line graphs[J]. Journal of Physics A: Mathematical and General, 1991, 24(2): L73-L77. [6] MIYAHARA S, KUSUTA S, FURUKAWA N. BCS theory on a flat band lattice[J]. Physica C: Superconductivity, 2007, 460/461/462: 1145-1146. [7] SUN K, GU Z C, KATSURA H, et al. Nearly flatbands with nontrivial topology[J]. Physical Review Letters, 2011, 106(23): 236803. [8] TANG E, MEI J W, WEN X G. High-temperature fractional quantum Hall states[J]. Physical Review Letters, 2011, 106(23): 236802. [9] WU C J, BERGMAN D, BALENTS L, et al. Flat bands and Wigner crystallization in the honeycomb optical lattice[J]. Physical Review Letters, 2007, 99(7): 070401. [10] IMADA M, KOHNO M. Superconductivity from flat dispersion designed in doped Mott insulators[J]. Physical Review Letters, 2000, 84(1): 143-146. [11] WANG X, DU K, LIU Y Y F, et al. Raman spectroscopy of atomically thin two-dimensional magnetic iron phosphorus trisulfide (FePS3) crystals[J]. 2D Materials, 2016, 3(3): 031009. [12] LI X X, YANG J L. First-principles design of spintronics materials[J]. National Science Review, 2016, 3(3): 365-381. [13] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. [14] CARVALHO A, WANG M, ZHU X, et al. Phosphorene: from theory to applications[J]. Nature Reviews Materials, 2016, 1: 16061. [15] SUN Q L, DAI Y, MA Y D, et al. Lateral heterojunctions within monolayer h-BN/graphene: a first-principles study[J]. RSC Advances, 2015, 5(42): 33037-33043. [16] HU J, WANG P, ZHAO J J, et al. Engineering magnetic anisotropy in two-dimensional magnetic materials[J]. Advances in Physics: X, 2018, 3(1): 1432415. [17] YIN J X, ZHANG S S, LI H, et al. Giant and anisotropic many-body spin-orbit tunability in a strongly correlated Kagome magnet[J]. Nature, 2018, 562(7725): 91-95. [18] YE L D, KANG M G, LIU J W, et al. Massive Dirac fermions in a ferromagnetic Kagome metal[J]. Nature, 2018, 555(7698): 638-642. [19] DAALDEROP G H O, KELLY P J, SCHUURMANS M F H. First-principles calculation of the magnetocrystalline anisotropy energy of iron, cobalt, and nickel[J]. Physical Review B, 1990, 41(17): 11919-11937. [20] WANG B, ZHANG Y H, MA L A, et al. MnX (X = P, As) monolayers: a new type of two-dimensional intrinsic room temperature ferromagnetic half-metallic material with large magnetic anisotropy[J]. Nanoscale, 2019, 11(10): 4204-4209. [21] PERDEW J P, CHEVARY J A, VOSKO S H, et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation[J]. Physical Review B, 1992, 46(11): 6671-6687. [22] BLÖCHL P E. Projector augmented-wave method[J]. Physical Review B, 1994, 50(24): 17953-17979. [23] KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16): 11169-11186. [24] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. [25] ZHENG S A, HUANG C X, YU T, et al. High-temperature ferromagnetism in an Fe3P monolayer with a large magnetic anisotropy[J]. The Journal of Physical Chemistry Letters, 2019, 10(11): 2733-2738. [26] JIANG P H, WANG C, CHEN D C, et al. Stacking tunable interlayer magnetism in bilayer CrI3[J]. Physical Review B, 2019, 99(14): 144401. [27] NOSÉ S. A unified formulation of the constant temperature molecular dynamics methods[J]. The Journal of Chemical Physics, 1984, 81(1): 511-519. [28] TOGO A, TANAKA I. First principles phonon calculations in materials science[J]. Scripta Materialia, 2015, 108: 1-5. [29] ZHANG Y H, WANG B, GUO Y L, et al. A universal framework for metropolis Monte Carlo simulation of magnetic Curie temperature[J]. Computational Materials Science, 2021, 197: 110638. [30] KARIGERASI M H, KANG K, GRANROTH G E, et al. Strongly two-dimensional exchange interactions in the in-plane metallic antiferromagnet Fe2As probed by inelastic neutron scattering[J]. Physical Review Materials, 2020, 4(11): 114416. [31] YANG K X, KANG K, DIAO Z, et al. Magneto-optic response of the metallic antiferromagnet Fe2As to ultrafast temperature excursions[J]. Physical Review Materials, 2019, 3(12): 124408. [32] YU J A, LE C C, LI Z W, et al. Author correction: coexistence of ferromagnetism, antiferromagnetism, and superconductivity in magnetically anisotropic (Eu, La)FeAs2[J]. NPJ Quantum Materials, 2021, 6: 67. [33] ZHANG B J, LIU K, LU Z Y. Tuning the magnetism of the top-layer FeAs on BaFe2As2(001): first-principles study[J]. Physical Review B, 2018, 97(16): 165105. [34] MARCK STEVEN C van der. Site percolation and random walks on d-dimensional Kagomé lattices[J]. Journal of Physics A: Mathematical and General, 1998, 31(15): 3449-3460. [35] SCHLICKUM U, DECKER R, KLAPPENBERGER F, et al. Chiral Kagomé lattice from simple ditopic molecular bricks[J]. Journal of the American Chemical Society, 2008, 130(35): 11778-11782. [36] HAYNES T D, MASKERY I, BUTCHERS M W, et al. Ferrimagnetism in Fe-rich NbFe2[J]. Physical Review B, 2012, 85(11): 115137. [37] SUN Y J, ZHUO Z W, WU X J, et al. Room-temperature ferromagnetism in two-dimensional Fe2Si nanosheet with enhanced spin-polarization ratio[J]. Nano Letters, 2017, 17(5): 2771-2777. [38] XU Z M, ZHU H. Two-dimensional manganese nitride monolayer with room temperature rigid ferromagnetism under strain[J]. The Journal of Physical Chemistry C, 2018, 122(26): 14918-14927. [39] ZHAO T S, ZHOU J A, WANG Q A, et al. Ferromagnetic and half-metallic FeC2 monolayer containing C2 dimers[J]. ACS Applied Materials & Interfaces, 2016, 8(39): 26207-26212. |