[1] LI G R, XU Q, SINGH R, et al. Graphene oxide/multiwalled carbon nanotubes assisted serial quadruple tapered structure-based LSPR sensor for glucose detection[J]. IEEE Sensors Journal, 2022, 22(17): 16904-16911. [2] REN B S, LUAN Q R, MA L L, et al. Amorphous domain induced LSPR Zn-Cr-In-S solid solution with enhanced visible photocatalytic H2 production[J]. Materials Chemistry and Physics, 2022, 285: 126100. [3] LV S J, DU Y P, WU F T, et al. Review on LSPR assisted photocatalysis: effects of physical fields and opportunities in multifield decoupling[J]. Nanoscale Advances, 2022, 4(12): 2608-2631. [4] WEST J L, HALAS N J. Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics[J]. Annual Review of Biomedical Engineering, 2003, 5: 285-292. [5] LIN M, LU M D, LIANG Y Z, et al. Polyelectrolyte-enhanced localized surface plasmon resonance optical fiber sensors: properties interrogation and bioapplication[J]. ACS Applied Nano Materials, 2022, 5(5): 6171-6180. [6] ATWATER H A, POLMAN A. Erratum: plasmonics for improved photovoltaic devices[J]. Nature Materials, 2010, 9(10): 865. [7] YANG Y, NOGAMI M, SHI J L, et al. Controlled surface-plasmon coupling in SiO2-coated gold nanochains for tunable nonlinear optical properties[J]. Applied Physics Letters, 2006, 88(8): 081110. [8] BOUHELIER A, BACHELOT R, LERONDEL G, et al. Surface plasmon characteristics of tunable photoluminescence in single gold nanorods[J]. Physical Review Letters, 2005, 95(26): 267405. [9] SHAN H F, MA W J, YANG H H, et al. Fabrication of Cu-doped molybdenum oxide for bifunctional SERS and photothermal conversion[J]. Materials Chemistry and Physics, 2022, 292: 126775. [10] AUGUSTINE S, SAINI M, K P S, et al. Au/Ag SERS active substrate for broader wavelength excitation[J]. Optical Materials, 2023, 135: 113319. [11] BAKKER R M, YUAN H K, LIU Z T, et al. Enhanced localized fluorescence in plasmonic nanoantennae[J]. Applied Physics Letters, 2008, 92(4): 043101. [12] SINGLA S, ABHISHEK, BANSAL N, et al. Analysis of gold nanoparticles dispersed bismuth borate glass: effect of size and concentration[J]. Journal of Materials Science: Materials in Electronics, 2023, 34(6): 526. [13] BARBIC M, MOCK J J, SMITH D R, et al. Single crystal silver nanowires prepared by the metal amplification method[J]. Journal of Applied Physics, 2002, 91(11): 9341-9345. [14] KOTTMANN J P, MARTIN O J F, SMITH D R, et al. Plasmon resonances of silver nanowires with a nonregular cross section[J]. Physical Review B, 2001, 64(23): 235402. [15] WANG L R, FANG Y. The investigation of a series of n-hydroxybenzoic acids (n=p, m, o) on a new surface enhanced Raman scattering active substrate[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2005, 62(4/5): 958-963. [16] HOU X M, FANG Y. Investigation of p-hydroxybenzoic acid from a new surface-enhanced Raman scattering system[J]. Journal of Colloid and Interface Science, 2007, 316(1): 19-24. [17] REN Y, LIU P, LIU R X, et al. The key of ITO films with high transparency and conductivity: grain size and surface chemical composition[J]. Journal of Alloys and Compounds, 2022, 893: 162304. [18] TCHENKA A, AGDAD A, BOUSSETA M, et al. Effect of vacuum annealing and position of metal Cu on structural, optical, electrical and thermoelectrical properties of ITO/Cu/ITO multilayers prepared by RF sputtering[J]. Optical Materials, 2022, 131: 112634. [19] XIA Y N, XIONG Y J, LIM B, et al. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics?[J]. Angewandte Chemie, 2009, 48(1): 60-103. [20] HONG R J, SONG X, TAO C X, et al. Surface-enhanced Raman scattering of silver thin films on as-roughened substrate by reactive ion etching[J]. Applied Physics A, 2016, 122(3): 178. [21] MALATHY V, SIVARANJANI S, VIDHYA V S, et al. Amorphous to crystalline transition and optoelectronic properties of nanocrystalline indium tin oxide (ITO) films sputtered with high RF power at room temperature[J]. Journal of Non-Crystalline Solids, 2009, 355(28/29/30): 1508-1516. [22] SZKUTNIK P D, ROUSSEL H, LAHOOTUN V, et al. Study of the functional properties of ITO grown by metalorganic chemical vapor deposition from different indium and tin precursors[J]. Journal of Alloys and Compounds, 2014, 603: 268-273. [23] BOUOUDINA M, OMRI K, EL-HILO M, et al. Structural and magnetic properties of Mn-doped ZnO nanocrystals[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 56: 107-112. [24] LIU X J, JIA L J, FAN G P, et al. Au nanoparticle enhanced thin-film silicon solar cells[J]. Solar Energy Materials and Solar Cells, 2016, 147: 225-234. [25] KANEHARA M, KOIKE H, YOSHINAGA T, et al. Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region[J]. Journal of the American Chemical Society, 2009, 131(49): 17736-17737. [26] KIM S S, CHOI S Y, PARK C G, et al. Transparent conductive ITO thin films through the sol-gel process using metal salts[J]. Thin Solid Films, 1999, 347(1/2): 155-160. [27] RAND B P, PEUMANS P, FORREST S R. Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters[J]. Journal of Applied Physics, 2004, 96(12): 7519-7526. [28] SZCZESNY R, SCIGALA A, DERKOWSKA-ZIELINSKA B, et al. Synthesis, optical, and morphological studies of ZnO powders and thin films fabricated by wet chemical methods[J]. Materials, 2020, 13(11): 2559. [29] RAMANATHAN G, MURALI K R. Optical performance of Tin doped indium oxide (ITO) thin films prepared by sol gel dip coating techniques using acrylamide route[J]. Optical and Quantum Electronics, 2022, 54(10): 1-12. [30] LIU T T, LIU Q Y, JIANG Y K, et al. Enhancement of nonlinear optical property of Cu2O/Ag/Cu2O composite films induced by laser irradiation[J]. Journal of Materials Science, 2021, 56(16): 9871-9882. [31] SERNA J, RUEDA E, GARCÍA H. Nonlinear optical properties of bulk cuprous oxide using single beam Z-scan at 790 nm[J]. Applied Physics Letters, 2014, 105(19): 191902. [32] GANESH V, YAHIA I S, ALFAIFY S, et al. Sn-doped ZnO nanocrystalline thin films with enhanced linear and nonlinear optical properties for optoelectronic applications[J]. Journal of Physics and Chemistry of Solids, 2017, 100: 115-125. [33] BIKORIMANA S, LAMA P, WALSER A, et al. Nonlinear optical responses in two-dimensional transition metal dichalcogenide multilayer: WS2, WSe2, MoS2 and Mo0.5W0.5S2[J]. Optics Express, 2016, 24(18): 20685. |