欢迎访问《人工晶体学报》官方网站,今天是 分享到:

人工晶体学报 ›› 2023, Vol. 52 ›› Issue (9): 1651-1659.

• 研究论文 • 上一篇    下一篇

基于纳米压痕与纳米划痕实验的单晶硅超精密切削特性研究

崔杰, 杨晓京, 李云龙, 张高赞, 李宗睿   

  1. 昆明理工大学机电工程学院,昆明 650500
  • 收稿日期:2023-04-05 出版日期:2023-09-15 发布日期:2023-09-19
  • 通信作者: 杨晓京,博士,教授。E-mail:xjyang@vip.sina.com
  • 作者简介:崔 杰(1996—),男,安徽省人,硕士研究生。E-mail:cuixiaojie96@163.com
  • 基金资助:
    国家自然科学基金(51765027)

Ultra Precision Cutting Characteristics of Monocrystalline Silicon Based on Nanoindentation and Nanoscratch Experiments

CUI Jie, YANG Xiaojing, LI Yunlong, ZHANG Gaozan, LI Zongrui   

  1. Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, China
  • Received:2023-04-05 Online:2023-09-15 Published:2023-09-19

摘要: 为研究单晶硅超精密切削特性,采用纳米压痕仪配合Berkovich金刚石压头对单晶硅<100>晶面进行纳米压痕与纳米划痕实验。纳米压痕实验分别以10、30 和50 mN载荷将压头压入单晶硅表面,发现30 mN载荷下载荷-位移曲线产生微小波动,而在50 mN载荷下发生“pop-out”现象,说明材料此时有突然的应力变化并有脆性破坏发生,预测了单晶硅脆塑转变的临界载荷略小于30 mN。开展变载荷纳米划痕实验,用0~100 mN的载荷刻划单晶硅表面,根据载荷-位移曲线观察到单晶硅在变载荷刻划中分为弹塑性去除和脆性去除阶段。弹塑性去除阶段,载荷-位移曲线波动平稳,而脆性去除阶段曲线波动较大,得到单晶硅脆塑转变的临界载荷为27 mN,临界深度为392 nm。通过恒载荷纳米划痕实验,在塑性加工域内分别以5、10和20 mN的恒载荷刻划单晶硅表面,并通过扫描电子显微镜(SEM)观察恒载荷划痕后的单晶硅表面形貌,分析刻划数据发现切削力和弹性回复率随着载荷的增加而增大,摩擦系数则先增大后减小。因此单晶硅超精密切削加工应选择合理的载荷,并充分考虑弹性回复的影响。

关键词: 单晶硅, 超精密切削, 纳米压痕, 纳米划痕, 脆塑转变, 切削力, 弹性回复率, 摩擦系数

Abstract: In order to investigate the ultra precision cutting characteristics of monocrystalline silicon, nanoindentation and nanoscratch experiments were conducted on <100> surface of monocrystalline silicon using a nanoindentation instrument and a Berkovich diamond indenter. In the nanoindentation experiment, the indenter was pressed onto the surface of monocrystalline silicon under 10, 30, and 50 mN loads, respectively. It is found that there are slight fluctuations in the load displacement curve under 30 mN load, while a "pop out" phenomenon occurred under 50 mN load, indicating a sudden stress change and brittle failure of the material, the critical load for brittle-plastic transition of monocrystalline silicon was predicted to be slightly less than 30 mN. Nanoscratch experiments with variable loads from 0 to 100 mN were carried out. According to the load-displacement curve, it is observed that monocrystalline silicon scratching can be divided into elastic-plastic removal and brittle removal stages during variable load. In the elastic-plastic removal stage, the load-displacement curve fluctuates smoothly, while in the brittle removal stage, the curve fluctuates significantly. The critical load for the brittle-plastic transition of monocrystalline silicon is 27 mN, and the critical depth is 392 nm. Finally, through the constant load nanoscratch experiment, the surface of monocrystalline silicon was scratched at a constant load of 5, 10, and 20 mN in the plastic processing region, respectively. The surface morphology of monocrystalline silicon after constant load scratch was observed by scanning electron microscopy (SEM). The scratching analysis data shows that the cutting force and elastic recovery rate increases with the increase of load, while the friction coefficient first increases and then decreases. Therefore, in ultra precision machining of monocrystalline silicon, it is necessary to select a reasonable machining load and fully consider the impact of elastic recovery.

Key words: monocrystalline silicon, ultra precision cutting, nanoindentation, nanoscratch, brittle-plastic transition, cutting force, elastic recovery rate, friction coefficient

中图分类号: