[1] MEYERS R A. Encyclopedia of physical science and technology[M]. 3rd ed. New York: Academic Press, 2001. [2] SHINAGAWA K. Magneto-optics[M]. Berlin: Springer Berlin Heidelberg, 2000: 137-177. [3] 贺 卿, 张 全, 党 伍, 等. 磁光隔离器的宇航应用评估研究[J]. 光纤与电缆及其应用技术, 2021(2): 34-37. HE Q, ZHANG Q, DANG W, et al. Research on aerospace application evaluation of magneto-optical isolator[J]. Optical Fiber & Electric Cable and Their Applications, 2021(2): 34-37 (in Chinese). [4] 周 洋, 邹玉林, 臧竞存. 光通信用磁光材料的研究进展[J]. 新技术新工艺, 2009(11): 100-103. ZHOU Y, ZOU Y L, ZANG J C. Research development of magneto-optic material for optic communication[J]. New Technology & New Process, 2009(11): 100-103 (in Chinese). [5] 刘建梅, 宋林峰, 冯剑楠, 等. 磁光阵列: 一种新型数据存储模式的实现[J]. 红外与激光工程, 2016, 45(9): 0935002. LIU J M, SONG L F, FENG J N, et al. ORAID—the implementation of a new data storage mode[J]. Infrared and Laser Engineering, 2016, 45(9): 0935002 (in Chinese). [6] 侯 越, 周 湶, 欧阳希, 等. 基于磁光晶体和光纤光栅的反射式磁场传感器[J]. 光学学报, 2024, 44(11):280-290. HOU Y, ZHOU Q, OUYANG X, et al. Reflective magnetic field sensor based on magneto-optical crystal and fiber Bragg grating[J]. Acta Optica Sinica, 2024, 44(11): 280-290 (in Chinese). [7] GELLER S, GILLEO M A. Structure and ferrimagnetism of yttrium and rare-earth-iron garnets[J]. Acta Crystallographica, 1957, 10(3): 239. [8] DUBS C, SURZHENKO O, LINKE R, et al. Sub-micrometer yttrium iron garnet LPE films with low ferromagnetic resonance losses[J]. Journal of Physics D: Applied Physics, 2017, 50(20): 204005. [9] JIN L C, JIA K C, HE Y J, et al. Pulsed laser deposition grown yttrium-iron-garnet thin films: effect of composition and iron ion valences on microstructure and magnetic properties[J]. Applied Surface Science, 2019, 483: 947-952. [10] PARK M B, CHO N H. Structural and magnetic characteristics of yttrium iron garnet (YIG, Ce∶YIG) films prepared by RF magnetron sputter techniques[J]. Journal of Magnetism and Magnetic Materials, 2001, 231(2/3): 253-264. [11] NICOLAS J, COUTURES J, COUTURES J P, et al. Sm2O3-Ga2O3 and Gd2O3-Ga2O3 phase diagrams[J]. Journal of Solid State Chemistry, 1984, 52(2): 101-113. [12] 高 尚, 李洪钢, 康仁科, 等. 新一代半导体材料氧化镓单晶的制备方法及其超精密加工技术研究进展[J]. 机械工程学报, 2021, 57(9): 213-232. GAO S, LI H G, KANG R K, et al. Recent advance in preparation and ultra-precision machining of new generation semiconductor material of β-Ga2O3 single crystals[J]. Journal of Mechanical Engineering, 2021, 57(9): 213-232 (in Chinese). [13] 中国科学院上海硅酸盐研究所101组. 钆镓石榴石的生长实验及其缺陷的初步观测[J]. 无机材料学报, 1974(4): 15-26. Group 101, Shanghai Institute of Silicate, Chinese Academy of Sciences. Growth experiment of gadolinium gallium garnet and preliminary observation of its defects[J]. Journal of Inorganic Materials, 1974(4): 15-26 (in Chinese). [14] BRANDLE C D, VALENTINO A J. Czochralski growth of rare earth gallium garnets[J]. Journal of Crystal Growth, 1972, 12(1): 3-8. [15] XU Y N, CHING W Y, BRICKEEN B K. Electronic structure and bonding in garnet crystals Gd3Sc2Ga3O12, Gd3Sc2Al3O12, and Gd3Ga3O12 compared to Y3Al3O12[J]. Physical Review B, 2000, 61(3): 1817-1824. [16] BRANDLE C D, BARNS R L. Crystal stoichiometry and growth of rare-earth garnets containing scandium[J]. Journal of Crystal Growth, 1973, 20(1): 0022024873900298. [17] 程毛杰, 孙敦陆, 罗建乔, 等. 新型GYSGG(GdxY3-xSc2Ga3O12)晶体的生长、结构及透过光谱研究[J]. 无机材料学报, 2014,29(10):1077-1081. CHENG M J, SUN D L, LUO J Q, et al. Growth, sturcture and transmission spectrum of a new type GYSGG(GdxY3-xSc2Ga3O12) crystal[J]. Journal of Inorganic Materials, 2014, 29(10): 1077-1081 (in Chinese). [18] MATEIKA D, LAURIEN R, RUSCHE C. Lattice parameters and distribution coefficients as function of Ca, Mg and Zr concentrations in czochralski grown rare earth gallium garnets[J]. Journal of Crystal Growth, 1982, 56(3): 677-689. [19] MOMMA K, IZUMI F. VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data[J]. Journal of Applied Crystallography, 2011, 44(6): 1272-1276. [20] 任国浩, 孙敦陆, 潘世烈, 等. 稀土晶体材料[M]. 北京: 冶金工业出版社, 2018. REN G H, SUN D L, PAN S L, et al. Rare earth crystal materials[M]. Beijing: Metallurgical Industry Press, 2018 (in Chinese). [21] 贾云鹏. 钇铁石榴石外延薄膜的制备及其磁各向异性研究[D]. 合肥: 中国科学技术大学, 2022. JIA Y P. Preparation and magnetic anisotropy of yttrium iron garnet epitaxial films[D]. Hefei: University of Science and Technology of China, 2022 (in Chinese). [22] BOUDIAR T, PAYET-GERVY B, BLANC-MIGNON M F, et al. Magneto-optical properties of yttrium iron garnet (YIG) thin films elaborated by radio frequency sputtering[J]. Journal of Magnetism and Magnetic Materials, 2004, 284: 77-85. [23] 张 瑞, 梅大江, 石小兔, 等. YAG晶体位错密度分布及蚀坑形貌[J]. 硅酸盐学报, 2023, 51(6): 1396-1405. ZHANG R, MEI D J, SHI X T, et al. Dislocation density distribution and etch pit morphology of yttrium aluminium garnet crystal[J]. Journal of the Chinese Ceramic Society, 2023, 51(6): 1396-1405 (in Chinese). [24] 石小兔, 张庆礼, 孙贵花, 等. 提拉法下Yb∶YAG单晶缺陷的正电子湮没研究[J]. 无机材料学报, 2023, 38(3): 316-321. SHI X T, ZHANG Q L, SUN G H, et al. Positron annihilation study of Yb∶YAG single crystal defects under Czochralski method[J]. Journal of Inorganic Materials, 2023, 38(3): 316-321 (in Chinese). [25] 王贝贝, 刘文鹏, 任 浩, 等. 钆钪铝石榴石单晶缺陷的微观形貌与成因研究[J]. 人工晶体学报, 2022, 51(11): 1851-1857. WANG B B, LIU W P, REN H, et al. Morphologies and formation mechanisms of the defects in gadolinium-scandium-aluminum garnet single crystal[J]. Journal of Synthetic Crystals, 2022, 51(11): 1851-1857 (in Chinese). [26] 张 瑞, 梅大江, 石小兔, 等. YAG晶体的位错研究进展[J]. 量子电子学报, 2022, 39(5): 687-706. ZHANG R, MEI D J, SHI X T, et al. Research progress of dislocation of YAG crystal[J]. Chinese Journal of Quantum Electronics, 2022, 39(5): 687-706 (in Chinese). [27] LI H Y, SUN D L, ZHANG H L, et al. Growth, rietveld refinement, Raman spectrum and dislocation of Ca2+/Mg2+/Zr4+-substituted GGG: a potential substrate and laser host material[J]. Journal of Materials Science: Materials in Electronics, 2024, 35(15): 1008. [28] WANG Z T, SUN D L, ZHANG H L, et al. Growth, thermal, spectroscopy and 2.7 μm multiwavelength laser output of Er∶GYAP crystal[EB/J]. Journal of Rare Earths, 2024. https://doi.org/10.1016/j.jre.2024.05.002. [29] 赵广军, 李 涛, 徐 军. 大尺寸光通讯磁光薄膜衬底钆镓石榴石(Gd3Ga5O12)单晶的生长研究[J]. 人工晶体学报, 2001, 30(4): 341-347. ZHAO G J, LI T, XU J. Growth investigations of large size magneto-optic film substrate Gd3Ga5O12(GGG) single crystals for optical communications[J]. Journal of Synthetic Crystals, 2001, 30(4): 341-347 (in Chinese). [30] ZHOU H, MA X H, CHEN G T, et al. Tm3+-doped Gd3Ga5O12 crystal: a potential tunable laser crystal at 2.0 μm[J]. Journal of Alloys and Compounds, 2009, 475(1/2): 555-559. [31] 潘绍瑜, 胡德康, 何龙英. 掺杂钆镓石榴石单晶的生长[J]. 磁性材料及器件, 2003, 34(1): 45-46. PAN S Y, HU D K, HE L Y. Study on growth of doped GdGa garnet singal crystal[J]. Journal of Magnetic Materials and Devices, 2003, 34(1): 45-46 (in Chinese). [32] 程毛杰, 张会丽, 董昆鹏, 等. 直径3英寸钆镓石榴石晶体生长及性能研究[J]. 量子电子学报, 2021, 38(2): 160-166. CHENG M J, ZHANG H L, DONG K P, et al. Growth and properties of gadolinium gallium garnet crystal with 3 inches diameter[J]. Chinese Journal of Quantum Electronics, 2021, 38(2): 160-166 (in Chinese). [33] COCKAYNE B, LENT B, ROSLINGTON J M. Interface shape changes during the Czochralski growth of gadolinium gallium garnet single crystals[J]. Journal of Materials Science, 1976, 11(2): 259-263. [34] TAKAGI K, FUKAZAWA T, ISHII M. Inversion of the direction of the solid-liquid interface on the Czochralski growth of GGG crystals[J]. Journal of Crystal Growth, 1976, 32(1): 89-94. [35] HAN Z Y, SUN D L, ZHANG H L, et al. Investigation on the growth and properties of six garnet single crystals with large lattice constants[J]. Crystal Research and Technology, 2021, 56(5): 2000221. [36] DING J J, LIU T, CHANG H C, et al. Sputtering growth of low-damping yttrium-iron-garnet thin films[J]. IEEE Magnetics Letters, 2020, 11: 5502305. [37] GURJAR G, SHARMA V, PATNAIK S, et al. Structural and magnetization dynamic properties of single crystalline Bi-doped YIG thin film grown on GGG substrate having different planes[C]//Dae Solid State Physics Symposium 2019, AIP Conference Proceedings. Jodhpur, India. AIP Publishing, 2020, 2265: 030337. [38] 李 阳, 李 俊, 陈运茂, 等. 液相外延法制备的掺杂石榴石单晶薄膜[J]. 磁性材料及器件, 2023, 54(3): 17-21. LI Y, LI J, CHEN Y M, et al. Doped garnet single crystal films prepared by liquid phase epitaxy[J]. Journal of Magnetic Materials and Devices, 2023, 54(3): 17-21 (in Chinese). [39] WANG M Q, ZHANG F F, LI J J, et al. Tunable millisecond narrow-band Nd∶GSGG laser around 1336.6 nm for 27Al+ optical clock[J]. Applied Physics B, 2016, 122(5): 110. [40] DRUBE J, HUBER G, MATEIKA D. Flashlamp-pumped Cr3+∶GSAG and Cr3+∶GSGG: slope efficiency, resonator design, color centers and tunability[C]//Advanced Solid State Lasers. Zigzag, Oregon. Washington, D.C.: OSA, 1986. [41] 韩志远. 2.79微米掺铒钪镓石榴石单晶光纤制备与级联激光技术研究[D]. 合肥: 中国科学技术大学, 2023. HAN Z Y. Preparation of 2.79 μm Er-doped Sc-Ga garnet single crystal fiber and study on cascade laser technology[D].Hefei: University of Science and Technology of China, 2023 (in Chinese). [42] LEE-WONG E, DING J J, WANG X C, et al. Quantum sensing of spin fluctuations of magnetic insulator films with perpendicular anisotropy[J]. Physical Review Applied, 2021, 15(3): 034031. [43] WU Y, WEN K B, CHEN J K, et al. Strain-modulated spin Hall magnetoresistance in YIG/Pt heterojunctions[J]. Journal of Physics D Applied Physics, 2023, 56(4): 045305. [44] ZHANG Y Z, XU B, TIAN Q Y, et al. Sub-15-ns passively Q-switched Er∶YSGG laser at 2.8 μm with Fe∶ZnSe saturable absorber[J]. IEEE Photonics Technology Letters, 2019, 31(7): 565-568. [45] YE X L, XU X F, REN H J, et al. Study of LD side-pumped two-rod Er∶YSGG mid-infrared laser with 61-W output power[J]. Optics Communications, 2022, 507: 127608. [46] HAN Z Y, SUN D L, ZHANG H L, et al. Investigation of temperature distribution and 2.79 μm laser performance on the Er∶YSGG single crystal fiber[J]. Optics Communications, 2022, 502: 127426. [47] ZHANG H L, SUN D L, LUO J Q, et al. 28.02 W LD side-pumped CW laser operated at 2.8 μm in YSGG/Er∶YSGG/YSGG crystal[J]. Optics Express, 2024, 32(7): 11665-11672. [48] DING S J, REN H, LI H Y, et al. Hardness, Raman spectrum, thermal properties, and laser damage threshold of Y3Sc2Ga3O12 single crystal[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(2): 1616-1622. [49] SHEN Y M, JIA Y C, CHEN F. Femtosecond laser-induced optical waveguides in crystalline garnets: fabrication and application[J]. Optics Laser Technology, 2023, 164: 109528. [50] CHEN J K, SUN D L, LUO J Q, et al. Er3+ doped GYSGG crystal as a new laser material resistant to ionizing radiation[J]. Optics Communications, 2013, 301: 84-87. [51] LI G, BAI H, SU J, et al. Tunable perpendicular magnetic anisotropy in epitaxial Y3Fe5O12 films[J]. APL Materials, 2019, 7(4): 041104. [52] GUO C Y, WAN C H, ZHAO M K, et al. Spin-orbit torque switching in perpendicular Y3Fe5O12/Pt bilayer[J]. Applied Physics Letters, 2019, 114(19): 192409. [53] GUO S D, MCCULLIAN B, CHRIS HAMMEL P, et al. Low damping at few-K temperatures in Y3Fe5O12 epitaxial films isolated from Gd3Ga5O12 substrate using a diamagnetic Y3Sc2.5Al2.5O12 spacer[J]. Journal of Magnetism and Magnetic Materials, 2022, 562: 169795. [54] GUO S D, RUSSELL D, LANIER J, et al. Strong on-chip microwave photon-magnon coupling using ultralow-damping epitaxial Y3Fe5O12 films at 2 K[J]. Nano Letters, 2023, 23(11): 5055-5060. [55] KUPCHINSKAYA N E, VETOSHKO P M, KUZMICHEV A N, et al. Magneto-optical epitaxial bismuth-substituted yttrium iron garnet thin films on a diamagnetic substrate for low temperature applications[J]. Journal of Magnetism and Magnetic Materials, 2024, 591: 171623. [56] MENG Y, CHEN P, HE W Q, et al. A strategy for enhancing perpendicular magnetic anisotropy in yttrium iron garnet films[J]. Small, 2024, 20(25): 2308724. [57] FEI Y T, CHOU M M C, CHAI B H T. Crystal growth and morphology of substituted gadolinium gallium garnet[J]. Journal of Crystal Growth, 2002, 240(1): 185-189. [58] 张乐潓, 刘海润, 林成天, 等. 激光新晶体大晶格替代型GGG的生长及研究[J]. 硅酸盐学报, 1986(1):104-109. ZHANG L H, LIU H R, LIN C T, et al. Growth and inbestigation of new laser crystals of substituted GGG with large lattices[J]. Journal of the Chinese Ceramic Society, 1986(1): 104-109 (in Chinese). [59] 刘 琳. GGG(Ga, Mg, Zr)∶Cr可调谐激光晶体的研制[J]. 人工晶体学报, 1989, 18(4): 279. LIU L. Preparation of GGG(Ga, Mg, Zr)∶Cr tunable laser crystals[J]. Journal of Synthetic Crystals, 1989, 18(4): 279 (in Chinese). [60] 荀大敏, 朱化南, 靳福慧, 等. GGG(Ca,Mg,Zr)∶(Nd,Cr)激光新晶体的生长及测试[J]. 中国激光, 1986(11): 710-713. XUN D M, ZHU H NM, JIN F H, et al. Growth and meaurement of GGG (Ca,Mg,Zr)∶(Nd,Cr) laser crystals[J]. Chinese Journal of Lasers, 1986(11): 710-713 (in Chinese). [61] 叶纪龙, 张榕贵, 李来超, 等. SGGG多晶料合成及晶体生长[J]. 福建冶金, 2024, 53(2): 52-56. YE J L, ZHANG R G, LI L C, et al. Polycrystalline materials synthesis and crystal growth of SGGG[J]. Fujian Metallurgy, 2024, 53(2): 52-56 (in Chinese). [62] LI H Y, SUN D L, ZHANG H L, et al. Effect of Ca2+/Mg2+/Zr4+ concentrations on the characteristics of substituted gadolinium gallium garnet single crystals with large lattice parameter[J]. Journal of Alloys and Compounds, 2023, 965: 171467. [63] HANSEN P, KLAGES C, SCHULDT J, et al. Magnetic and magneto-optical properties of bismuth-substituted lutetium iron garnet films[J]. Physical Review B, Condensed Matter, 1985, 31(9): 5858-5864. [64] LIN Y N, JIN L C, ZHANG H W, et al. Bi-YIG ferrimagnetic insulator nanometer films with large perpendicular magnetic anisotropy and narrow ferromagnetic resonance linewidth[J]. Journal of Magnetism and Magnetic Materials, 2020, 496: 165886. [65] SOUMAH L, BEAULIEU N, QASSYM L, et al. Ultra-low damping insulating magnetic thin films get perpendicular[J]. Nature Communications, 2018, 9: 3355. [66] FAKHRUL T, KHURANA B, NEMBACH H T, et al. Substrate-dependent anisotropy and damping in epitaxial bismuth yttrium iron garnet thin films[J]. Advanced Materials Interfaces, 2023, 10(30): 2300217. [67] FU J B, HUA M X, WEN X, et al. Epitaxial growth of Y3Fe5O12 thin films with perpendicular magnetic anisotropy[J]. Applied Physics Letters, 2017, 110(20): 202403. [68] LABRANCHE B, QUN W, GALARNEAU P. Diode-pumped-CW and quasi-CW Nd∶GGG(Ca,Mg,Zr) laser[C]. SPIE, 1994: 326-331. [69] BOULON G, GARAPON C, MONTEIL A. Spectroscopy of new chromium/neodymium doped oxide laser materials: garnets and hexaaluminantes[C]//AIP Conference Proceedings. AIP, 1987, 160(1): 104-113.. [70] ZHOU W L, ZHANG Q L, XIAO J, et al. Sm3+-doped (Ca, Mg, Zr)GGG crystal: a potential reddish-orange laser crystal[J]. Journal of Alloys and Compounds, 2010, 491(1/2): 618-622. |