人工晶体学报 ›› 2024, Vol. 53 ›› Issue (10): 1675-1687.
安康1, 许光宇1, 吴海平1, 张亚琛1, 张永康1, 李利军1, 李鸿1, 张旭芳2, 刘峰斌1, 李成明3
收稿日期:
2024-07-08
出版日期:
2024-10-15
发布日期:
2024-10-21
通信作者:
刘峰斌,博士,教授。E-mail:fbliu@ncut.edu.cn;李成明,博士,教授。E-mail:chengmli@mater.ustb.edu.cn
作者简介:
安 康(1989—),男,山东省人,博士,副教授。E-mail:ankang@ncut.edu.cn
基金资助:
AN Kang1, XU Guangyu1, WU Haiping1, ZHANG Yachen1, ZHANG Yongkang1, LI Lijun1, LI Hong1, ZHANG Xufang2, LIU Fengbin1, LI Chengming3
Received:
2024-07-08
Online:
2024-10-15
Published:
2024-10-21
摘要: 金刚石以优异的性能在力学、光学、热学和电子学(如半导体)等领域发挥着重要作用。然而,金刚石表面质量会影响其在这些领域的应用效果,因此通过高效抛光技术获得高质量表面一直是金刚石研究的重点内容。金刚石抛光技术主要有机械抛光、热化学抛光、激光抛光和化学机械抛光等,其中化学机械抛光(CMP)具有设备运行成本低、工艺简单、抛光后表面损伤小等优点。本文在对上述几种抛光方法进行分析对比的基础上,聚焦于CMP领域,对其发展历程进行了较详尽的对比与分析。早期CMP技术虽在工艺和抛光效率上存在一定局限,但为后续技术的创新与优化奠定了基础;H2O2及其混合物的应用,不仅增强了CMP过程中的化学反应活性,提高了材料去除率,还有效降低了表面粗糙度,改善了金刚石表面质量;光催化辅助化学机械抛光可使金刚石达到高表面质量,但设备相对复杂,无法满足大规模生产的需求,需要进一步研究和优化。此外,本文还对化学机械抛光的未来发展进行了预测,为相关领域研究人员提供参考。
中图分类号:
安康, 许光宇, 吴海平, 张亚琛, 张永康, 李利军, 李鸿, 张旭芳, 刘峰斌, 李成明. 金刚石化学机械抛光研究进展[J]. 人工晶体学报, 2024, 53(10): 1675-1687.
AN Kang, XU Guangyu, WU Haiping, ZHANG Yachen, ZHANG Yongkang, LI Lijun, LI Hong, ZHANG Xufang, LIU Fengbin, LI Chengming. Research Progress in Chemical Mechanical Polishing of Diamond[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(10): 1675-1687.
[1] 王小安, 汪建华, 吕 琳, 等. 高浓度氩气对金刚石膜的质量、晶粒尺寸和硬度的影响[J]. 金刚石与磨料磨具工程, 2015, 35(5): 20-24. WANG X A, WANG J H, LV L, et al. Effect of high Ar concentration on quality, grain size and hardness of diamond films[J]. Diamond & Abrasives Engineering, 2015, 35(5): 20-24 (in Chinese). [2] KHABASHESKU V, FILONENKO V, BAGRAMOV R, et al. Nanoengineered polycrystalline diamond composites with advanced wear resistance and thermal stability[J]. ACS Applied Materials & Interfaces, 2021, 13(49): 59560-59566. [3] WANG L, BAI G, LI N, et al. Unveiling interfacial structure and improving thermal conductivity of Cu/diamond composites reinforced with Zr-coated diamond particles[J]. Vacuum, 2022,202:111133. [4] WILDI T, KISS M, QUACK N. Diffractive optical elements in single crystal diamond[J]. Optics Letters, 2020, 45(13): 3458. [5] ZHUANG G L, ZONG W J, TANG Y F, et al. Crystal orientation and material type related suppression to the graphitization wear of micro diamond tool[J]. Diamond and Related Materials, 2022, 127: 109182. [6] HAO X B, LIU B J, LI Y C, et al. Diamond single crystal-polycrystalline hybrid microchannel heat sink strategy for directional heat dissipation of hot spots in power devices[J]. Diamond and Related Materials, 2023, 135: 109858. [7] 赵正平. 超宽禁带半导体金刚石功率电子学研究的新进展[J]. 半导体技术, 2021, 46(1): 1-14. ZHAO Z P. New research progress in ultra wide bandgap semiconductor diamond power electronics[J]. Semiconductor Technology, 2021, 46(1): 1-14 (in Chinese). [8] ROY S, BALLA V K, MALLIK A K, et al. A comprehensive study of mechanical and chemo-mechanical polishing of CVD diamond[J]. Materials Today: Proceedings, 2018, 5(3): 9846-9854. [9] CHENG C Y, TSAI H Y, WU C H, et al. An oxidation enhanced mechanical polishing technique for CVD diamond films[J]. Diamond and Related Materials, 2005, 14(3): 622-625. [10] LUO H, AJMAL K M, LIU W, et al. Polishing and planarization of single crystal diamonds: state-of-the-art and perspectives[J]. International Journal of Extreme Manufacturing, 2021,3(2):22003. [11] SCHRECK M, GSELL S, BRESCIA R, et al. Ion bombardment induced buried lateral growth: the key mechanism for the synthesis of single crystal diamond wafers[J]. Scientific Reports, 2017, 7: 44462. [12] 吴百融, 薛常喜. 机械研磨单晶金刚石刀具前刀面精度[J]. 金刚石与磨料磨具工程, 2019, 39(2): 21-25. WU B R, XUE C X. Precision of rake face of mechanically lapped single crystal diamond tool[J]. Diamond & Abrasives Engineering, 2019, 39(2): 21-25 (in Chinese). [13] LEE Y C, LIN S J, BUCK V, et al. Surface acoustic wave properties of natural smooth ultra-nanocrystalline diamond characterized by laser-induced SAW pulse technique[J]. Diamond and Related Materials, 2008, 17(4): 446-450. [14] MATSUMAE T, KURASHIMA Y, UMEZAWA H, et al. Room-temperature bonding of single-crystal diamond and Si using Au/Au atomic diffusion bonding in atmospheric air[J]. Microelectronic Engineering, 2018, 195: 68-73. [15] 严朝辉, 汪建华, 满卫东, 等. CVD金刚石厚膜的机械抛光研究[J]. 金刚石与磨料磨具工程, 2007, 27(3): 32-35. YAN Z H, WANG J H, MAN W D, et al. Study of mechanical polishing of CVD diamond thick films[J]. Diamond & Abrasives Engineering, 2007, 27(3): 32-35 (in Chinese). [16] TANG C J, NEVES A J, FERNANDES A J S, et al. A new elegant technique for polishing CVD diamond films[J]. Diamond and Related Materials, 2003, 12(8): 1411-1416. [17] WEIMA J A, VON BORANY J, GRÖTZSCHEL R, et al. Investigating contaminants on thermochemically refined surfaces of chemical vapor deposited diamond films[J]. Journal of the Electrochemical Society, 2002, 149(5): G301. [18] ZONG W J, ZHANG J J, LIU Y, et al. Achieving ultra-hard surface of mechanically polished diamond crystal by thermo-chemical refinement[J]. Applied Surface Science, 2014, 316: 617-624. [19] OZKAN A M, MALSHE A P, BROWN W D. Sequential multiple-laser-assisted polishing of free-standing CVD diamond substrates[J]. Diamond and Related Materials, 1997, 6(12): 1789-1798. [20] YOSHIDA A, DEGUCHI M, KITABATAKE M, et al. Atomic level smoothing of CVD diamond films by gas cluster ion beam etching[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1996, 112: 248-251. [21] GROGAN D F, ZHAO T, BOVARD B G, et al. Planarizing technique for ion-beam polishing of diamond films[J]. Applied Optics, 1992, 31(10): 1483-1487. [22] DU C Y, DAI Y F, GUAN C L, et al. High efficiency removal of single point diamond turning marks on aluminum surface by combination of ion beam sputtering and smoothing polishing[J]. Optics Express, 2021, 29(3): 3738-3753. [23] LIU N, SUGAWARA K, YOSHITAKA N, et al. Damage-free highly efficient plasma-assisted polishing of a 20-mm square large mosaic single crystal diamond substrate[J]. Scientific Reports, 2020, 10: 19432. [24] LUO H, AJMAL K M, LIU W, et al. Atomic-scale and damage-free polishing of single crystal diamond enhanced by atmospheric pressure inductively coupled plasma[J]. Carbon, 2021, 182: 175-184. [25] HAISMA J, VAN DER KRUIS F J H M, SPIERINGS B A C M, et al. Damage-free tribochemical polishing of diamond at room temperature: a finishing technology[J]. Precision Engineering, 1992, 14(1): 20-27. [26] HITCHINER M P, WILKS E M, WILKS J. The polishing of diamond and diamond composite materials[J]. Wear, 1984, 94(1): 103-120. [27] HARRIS D C. Materials for infrared windows and domes: properties and performance[Z]. Portland: Copyright Clearance Center, 2000: 24. [28] ZHENG Y T, YE H T, THORNTON R, et al. Subsurface cleavage of diamond after high-speed three-dimensional dynamic friction polishing[J]. Diamond and Related Materials, 2020, 101: 107600. [29] LIANG Y F, ZHENG Y T, WEI J J, et al. Effect of grain boundary on polycrystalline diamond polishing by high-speed dynamic friction[J]. Diamond and Related Materials, 2021, 117: 108461. [30] 徐 锋, 左敦稳, 王 珉, 等. CVD金刚石厚膜的机械抛光及其残余应力的分析[J]. 人工晶体学报, 2004, 33(3): 436-440. XU F, ZUO D W, WANG M, et al. Study on mechanical polishing for CVD diamond thick film and its residual stresses[J]. Journal of Synthetic Crystals, 2004, 33(3): 436-440 (in Chinese). [31] KUBOTA A, NAGAE S, MOTOYAMA S. High-precision mechanical polishing method for diamond substrate using micron-sized diamond abrasive grains[J]. Diamond and Related Materials, 2020, 101: 107644. [32] AN K, LIU P, ZHANG Y K, et al. Prestressing method to inhibit crack initiation and expansion in a large-sized diamond film during polishing[J]. Diamond and Related Materials, 2024, 144: 111022. [33] 刘敬明, 蒋 政, 张恒大, 等. 大面积CVD金刚石膜的热铁板抛光[J]. 北京科技大学学报, 2001, 23(1): 42-44. LIU J M, JIANG Z, ZHANG H D, et al. Thermo-chemical polishing of large area CVD diamond films[J]. Chinese Journal of Engineering, 2001, 23(1): 42-44 (in Chinese). [34] 王德政, 周克崧, 韩培刚, 等. 金刚石薄膜机械抛光的研究[J]. 广东有色金属学报, 1997(1):43-46. WANG D Z, ZHOU K S, HAN P G, et al. Research on mechanical polishing of diamond films[J]. Journal of Guangdong Nonferrous Metals, 1997(1):43-46(in Chinese). [35] ZAITSEV A M, KOSACA G, RICHARZ B, et al. Thermochemical polishing of CVD diamond films[J]. Diamond and Related Materials, 1998, 7(8): 1108-1117. [36] 马泳涛, 张建立, 李 钝, 等. 热铁盘法抛光CVD金刚石的微观表面研究[J]. 金刚石与磨料磨具工程, 2008, 28(4): 57-61+65. MA Y T, ZHANG J L, LI D, et al. Study on micro surfaces of CVD diamond polished by hot metal plate[J]. Diamond & Abrasives Engineering, 2008, 28(4): 57-61+65 (in Chinese). [37] PRIESKE M, VOLLERTSEN F. Picosecond-laser polishing of CVD-diamond coatings without graphite formation[J]. Materials Today: Proceedings, 2021, 40: 1-4. [38] KOMLENOK M, PASHININ V, SEDOV V, et al. Femtosecond and nanosecond laser polishing of rough polycrystalline diamond[J]. Laser Physics, 2022, 32(8): 084003. [39] NAGASE T, KATO H, PAHLOVY S A, et al. Nanosmoothing of single crystal diamond chips by 1 keV Ar+ ion bombardment[J]. Journal of Vacuum Science & Technology B, 2010, 28(2): 263-267. [40] MI S C, TOROS A, GRAZIOSI T, et al. Non-contact polishing of single crystal diamond by ion beam etching[J]. Diamond and Related Materials, 2019, 92: 248-252. [41] YAMAMURA K, EMORI K, SUN R, et al. Damage-free highly efficient polishing of single-crystal diamond wafer by plasma-assisted polishing[J]. CIRP Annals, 2018, 67(1): 353-356. [42] ZHENG Y T, JIA Y W, LIU J L, et al. Surface etching evolution of mechanically polished single crystal diamond with subsurface cleavage in microwave hydrogen plasma: topography, state and electrical properties[J]. Vacuum, 2022, 199: 110932. [43] XIAO C, HSIA F C, SUTTON-COOK A, et al. Polishing of polycrystalline diamond using synergies between chemical and mechanical inputs: a review of mechanisms and processes[J]. Carbon, 2022, 196: 29-48. [44] THORNTON A G, WILKS J. The polishing of diamonds in the presence of oxidising agents[J]. Diamond and Related Materials, 1974(39):39-42. [45] KÜHNLE J, WEIS O. Mechanochemical superpolishing of diamond using NaNO3 or KNO3 as oxidizing agents[J]. Surface Science, 1995, 340: 16-22. [46] OLLISON C D, BROWN W D, MALSHE A P, et al. A comparison of mechanical lapping versus chemical-assisted mechanical polishing and planarization of chemical vapor deposited (CVD) diamond[J]. Diamond and Related Materials, 1999, 8(6): 1083-1090. [47] WANG C Y, ZHANG F L, KUANG T C, et al. Chemical/mechanical polishing of diamond films assisted by molten mixture of LiNO3 and KNO3[J]. Thin Solid Films, 2006, 496(2): 698-702. [48] REN J, ZHANG K L, WANG F, et al. Investigation of diamond films polished by thermal chemical mechanical polishing[J]. ECS Transactions, 2013, 52(1): 517. [49] YUAN Z W, ZHENG P, WEN Q, et al. Chemical kinetics mechanism for chemical mechanical polishing diamond and its related hard-inert materials[J]. The International Journal of Advanced Manufacturing Technology, 2018, 95(5): 1715-1727. [50] YUAN Z W, JIN Z J, ZHANG Y J, et al. Chemical mechanical polishing slurries for chemically vapor-deposited diamond films[J]. Journal of Manufacturing Science and Engineering, 2013, 135(4): 041006. [51] TOKUDA N, TAKEUCHI D, RI S G, et al. Flattening of oxidized diamond (111) surfaces with H2SO4/H2O2 solutions[J]. Diamond and Related Materials, 2009, 18: 213-215. [52] KUBOTA A, FUKUYAMA S, ICHIMORI Y, et al. Surface smoothing of single-crystal diamond (100) substrate by polishing technique[J]. Diamond and Related Materials, 2012, 24: 59-62. [53] KUBOTA A, NAGAE S, MOTOYAMA S, et al. Two-step polishing technique for single crystal diamond (100) substrate utilizing a chemical reaction with iron plate[J]. Diamond and Related Materials, 2015, 60: 75-80. [54] KUBOTA A, MOTOYAMA S, TOUGE M. Surface smoothing of a polycrystalline diamond using an iron plate-H2O2 chemical reaction[J]. Diamond and Related Materials, 2016, 69: 96-101. [55] YUAN S, GUO X G, LI M, et al. An insight into polishing slurry for high quality and efficiency polishing of diamond[J]. Tribology International, 2022, 174: 107789. [56] KUBOTA A, NAGAE S, TOUGE M. Improvement of material removal rate of single-crystal diamond by polishing using H2O2 solution[J]. Diamond and Related Materials, 2016, 70: 39-45. [57] YUAN S, GUO X G, HUANG J X, et al. Sub-nanoscale polishing of single crystal diamond (100) and the chemical behavior of nanoparticles during the polishing process[J]. Diamond and Related Materials, 2019, 100: 107528. [58] GUO X G, YUAN S, WANG X L, et al. Atomistic mechanisms of chemical mechanical polishing of diamond (100) in aqueous H2O2/pure H2O: Molecular dynamics simulations using reactive force field (ReaxFF)[J]. Computational Materials Science, 2019, 157: 99-106. [59] LIAO L X, LUO S M, CHANG X F, et al. Study on the mechanism of chemical mechanical polishing on high-quality surface of single crystal diamond[J]. Journal of Manufacturing Processes, 2023, 105: 386-398. [60] ANAN S, TOUGE M, KUBOTA A, et al. Study on ultra precision polishing of single crystal diamond substrates under ultraviolet irradiation[J]. Key Engineering Materials, 2009, 407/408: 355-358. [61] WATANABE J, TOUGE M, SAKAMOTO T. Ultraviolet-irradiated precision polishing of diamond and its related materials[J]. Diamond and Related Materials, 2013, 39: 14-19. [62] KUBOTA A, TAKITA T. Novel planarization method of single-crystal diamond using 172 nm vacuum-ultraviolet light[J]. Precision Engineering, 2018, 54: 269-275. [63] YANG H P, JIN Z J, NIU L, et al. Visible-light catalyzed assisted chemical mechanical polishing of single crystal diamond[J]. Diamond and Related Materials, 2022, 125: 108982. [64] YANG H P, JIN Z J, NIU H, et al. A novel visible-light catalyzed assisted single crystal diamond chemical mechanical polishing slurry and polishing mechanism[J]. Materials Today Communications, 2022, 33: 104249. [65] 高 濂, 郑 珊, 张青红, 等. 纳米氧化钛光催化材料及应用[M]. 北京: 化学工业出版社, 2002. GAO L, ZHENG S, ZHANG Q H, et al. Nanometer titanium oxide photocatalytic materials and their applications[M]. Beijing: Chemical Industry Press, 2002 (in Chinese). [66] LIU W T, XIONG Q, LU J B, et al. Tribological behavior of single crystal diamond based on UV photocatalytic reaction[J]. Tribology International, 2022, 175: 107806. [67] 苑泽伟, 杜海洋, 何 艳, 等. 光催化辅助化学机械抛光CVD金刚石抛光液的研制[J]. 金刚石与磨料磨具工程, 2016, 36(5): 15-20. YUAN Z W, DU H Y, HE Y, et al. Preparation of slurry for photocatalytic assisted chemical mechanical polishing CVD diamond[J]. Diamond & Abrasives Engineering, 2016, 36(5): 15-20 (in Chinese). [68] SHAO J Y, ZHAO Y J, ZHU J H, et al. A new slurry for photocatalysis-assisted chemical mechanical polishing of monocrystal diamond[J]. Machines, 2023, 11(6): 664. [69] HAN X S, HU Y Z, YU S Y. Investigation of material removal mechanism of silicon wafer in the chemical mechanical polishing process using molecular dynamics simulation method[J]. Applied Physics A, 2009, 95(3): 899-905. [70] HARRISON J A, WHITE C T, COLTON R J, et al. Molecular-dynamics simulations of atomic-scale friction of diamond surfaces[J]. Physical Review B, 1992, 46(15): 9700-9708. [71] HARRISON J A, WHITE C T, COLTON R J, et al. Effects of chemically bound, flexible hydrocarbon species on the frictional properties of diamond surfaces[J]. The Journal of Physical Chemistry, 1993, 97(25): 6573-6576. [72] HARRISON J A, BRENNER D W. Simulated tribochemistry: an atomic-scale view of the wear of diamond[J]. Journal of the American Chemical Society, 1994, 116(23): 10399-10402. [73] GAO G T, CANNARA R J, CARPICK R W, et al. Atomic-scale friction on diamond: a comparison of different sliding directions on (001) and (111) surfaces using MD and AFM[J]. Langmuir, 2007, 23(10): 5394-5405. [74] YANG N, HUANG W, LEI D J. Control of nanoscale material removal in diamond polishing by using iron at low temperature[J]. Journal of Materials Processing Technology, 2020, 278: 116521. [75] LIN Q, CHEN S L, JI Z, et al. High-temperature wear mechanism of diamond at the nanoscale: a reactive molecular dynamics study[J]. Applied Surface Science, 2022, 585: 152614. [76] LIN J F, FANG T H, WU C D, et al. Nanotribological behavior of diamond surfaces using molecular dynamics with fractal theory and experiments[J]. Current Applied Physics, 2010, 10(1): 266-271. [77] YANG N, ZONG W J, LI Z Q, et al. Amorphization anisotropy and the internal of amorphous layer in diamond nanoscale friction[J]. Computational Materials Science, 2014, 95: 551-556. [78] LIU H Z, ZONG W J, CHENG X. Behaviors of carbon atoms induced by friction in mechanical polishing of diamond[J]. Computational Materials Science, 2021, 186: 110069. [79] SHI Z Y, JIN Z J, GUO X G, et al. Interfacial friction properties in diamond polishing process and its molecular dynamic analysis[J]. Diamond and Related Materials, 2019, 100: 107546. [80] SHI Z Y, JIN Z J, GUO X G, et al. Insights into the atomistic behavior in diamond chemical mechanical polishing with OH environment using ReaxFF molecular dynamics simulation[J]. Computational Materials Science, 2019, 166: 136-142. [81] 袁 菘, 郭晓光, 金洙吉, 等. 金刚石化学机械抛光研究现状[J]. 表面技术, 2020, 49(4): 11-22. YUAN S, GUO X G, JIN Z J, et al. Research status on chemical mechanical polishing of diamond[J]. Surface Technology, 2020, 49(4): 11-22 (in Chinese). [82] YUAN S, GUO X G, LI P H, et al. Insights into the surface oxidation modification mechanism of nano-diamond: an atomistic understanding from ReaxFF simulations[J]. Applied Surface Science, 2021, 540: 148321. [83] YUAN S, GUO X G, HUANG J X, et al. Insight into the mechanism of low friction and wear during the chemical mechanical polishing process of diamond: a reactive molecular dynamics simulation[J]. Tribology International, 2020, 148: 106308. [84] YUAN S, GUO X G, MAO Q, et al. Effects of pressure and velocity on the interface friction behavior of diamond utilizing ReaxFF simulations[J]. International Journal of Mechanical Sciences, 2021, 191: 106096. |
[1] | 兰飞飞, 刘莎莎, 房诗舒, 王英民, 程红娟. 金刚石基GaN界面热阻控制研究进展[J]. 人工晶体学报, 2024, 53(6): 913-921. |
[2] | 肖宏宇, 李勇, 田昌海, 张蔚曦, 王强, 肖政国, 王应, 金慧, 鲍志刚, 周振翔. Ib型金刚石单晶生长及合成腔体温度场分布研究[J]. 人工晶体学报, 2024, 53(6): 959-966. |
[3] | 孙兴汉, 李纪虎, 张伟, 曾群锋, 张俊锋. 碳化硅化学机械抛光中材料去除非均匀性研究进展[J]. 人工晶体学报, 2024, 53(4): 585-599. |
[4] | 张雅淋, 安晓明, 葛新岗, 姜龙, 李义锋. 大尺寸金刚石激光闪射法热导率测试研究[J]. 人工晶体学报, 2024, 53(3): 503-510. |
[5] | 鲁雪松, 王万堂, 王蓉, 杨德仁, 皮孝东. 半导体碳化硅衬底的湿法氧化[J]. 人工晶体学报, 2024, 53(2): 181-193. |
[6] | 郝敬林, 邓丽芬, 王凯悦, 宋惠, 江南, 西村一仁. 高温高压合成掺杂金刚石研究进展[J]. 人工晶体学报, 2024, 53(2): 194-209. |
[7] | 李信儒, 侯童, 马旭, 王佩, 李阳, 穆文祥, 贾志泰, 陶绪堂. 斜切角对β-Ga2O3(100)面衬底加工的影响研究[J]. 人工晶体学报, 2023, 52(9): 1570-1575. |
[8] | 李宗平, 程大猛. 金刚石线锯锯切β-Ga2O3晶体应力场分析[J]. 人工晶体学报, 2023, 52(8): 1378-1385. |
[9] | 陈根强, 赵浠翔, 于众成, 李政, 魏强, 林芳, 王宏兴. 异质外延单晶金刚石及其相关电子器件的研究进展[J]. 人工晶体学报, 2023, 52(6): 931-944. |
[10] | 乔鹏飞, 刘康, 代兵, 刘本建, 张森, 张晓晖, 朱嘉琦. 终端金刚石能带结构与物理性能的研究进展[J]. 人工晶体学报, 2023, 52(6): 945-959. |
[11] | 简小刚, 张毅, 梁晓伟, 姚文山. 硫硒元素掺杂金刚石表面的生长位点研究[J]. 人工晶体学报, 2023, 52(6): 1120-1127. |
[12] | 彭博, 李奇, 张舒淼, 樊叔维, 王若铮, 王宏兴. 金刚石肖特基二极管的研究进展[J]. 人工晶体学报, 2023, 52(5): 732-745. |
[13] | 吴锐文, 宋华平, 杨军伟, 屈红霞, 赖晓芳. 基于聚氨酯垫的4H-SiC单晶衬底研磨性质研究[J]. 人工晶体学报, 2023, 52(5): 759-765. |
[14] | 屈鹏霏, 金鹏, 周广迪, 王镇, 许敦洲, 吴巨, 郑红军, 王占国. 单晶金刚石异质外延用铱复合衬底研究现状[J]. 人工晶体学报, 2023, 52(5): 857-877. |
[15] | 徐建喜, 王钰宁, 徐俞, 王建峰, 徐科. 石墨烯上异质远程外延GaN的研究[J]. 人工晶体学报, 2023, 52(5): 894-900. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||