[1] MOHAMED A, YU L, FANG Y, et al. Iron mineral-humic acid complex enhanced Cr(VI) reduction by Shewanella oneidensis MR-1[J]. Chemosphere, 2020, 247: 125902. [2] PANAGIOTAKIS I, DERMATAS D, VATSERIS C, et al. Forensic investigation of a chromium(VI) groundwater plume in Thiva, Greece[J]. Journal of Hazardous Materials, 2015, 281: 27-34. [3] WANG Q, ZHANG Y, LI Y T, et al. Simultaneous Cu-EDTA oxidation de complexation and Cr(VI) reduction in water by persulfate/formate system: reaction process and mechanisms[J]. Chemical Engineering Journal, 2022, 427: 131584. [4] SARKAR B, NAIDU R, KRISHNAMURTI G, et al. Manganese(II)-catalyzed and clay-minerals-mediated reduction of chromium(VI) by citrate[J]. Environmental Science & Technology, 2013, 47(23): 13629-13636. [5] BROSE D A, JAMES B R. Hexavalent chromium reduction by tartaric acid and isopropyl alcohol in mid-atlantic soils and the role of Mn(III, IV)(hydr)oxides[J]. Environmental Science & Technology, 2013, 47(22): 12985-12991. [6] LI Y Y, LI X H, AN Z X, et al. Room-temperature olefin epoxidation reaction by two 2D cobalt metal-organic complexes under O2 atmosphere: coordination and structural regulation[J]. Chinese Chemical Letters, 2024: 109716. [7] WANG A N, FAN R Q, PI X X, et al. Nitrogen-doped microporous carbons derived from pyridine ligand-based metal-organic complexes as high-performance SO2 adsorption sorbents[J]. ACS Applied Materials & Interfaces, 2018, 10(43): 37407-37416. [8] LI Y Y, LI X H, XU N, et al. A new metal-organic complex with coordination unsaturated Co(II) as high-efficiency heterogeneous catalyst for selective oxidation of alkylbenzenes[J]. Molecular Catalysis, 2023, 548: 113428. [9] KEMPAHANUMAKKAGARI S, VELLINGIRI K, DEEP A, et al. Metal-organic framework composites as electrocatalysts for electrochemical sensing applications[J]. Coordination Chemistry Reviews, 2018, 357: 105-129. [10] LIU G C, LI Y, CHI J, et al. Multi-functional fluorescent responses of cobalt complexes derived from functionalized amide-bridged ligand[J]. Dyes and Pigments, 2020, 174: 108064. [11] ZHANG Q, HU J X, LI Q, et al. Single molecule magnetic behavior and photo-enhanced proton conductivity in a series of photochromic complexes[J]. Chinese Chemical Letters, 2022, 33(3): 1417-1421. [12] LAURIER K G M, VERMOORTELE F, AMELOOT R, et al. Iron(III)-based metal-organic frameworks As visible light photocatalysts[J]. Journal of the American Chemical Society, 2013, 135(39): 14488-14491. [13] POLAND E M, HO C C. Photoactive N-heterocyclic carbene transition metal complexes in bond-forming photocatalysis: state-of-the-art and opportunities[J]. Applied Organometallic Chemistry, 2022: 6746. [14] XIAO D X, LOU X Y, LIU R L, et al. Fe-catalyzed photoreduction of Cr(VI) with dicarboxylic acid (C2-C5): divergent reaction pathways[J]. Desalination and Water Treatment, 2015, 56(4): 1020-1028.. [15] LI X H, LIU Y, LIN H Y, et al. Solvent-induced two co-based 3D metal-organic frameworks as platforms for the high degradation of rhodamine B under sunlight[J]. Crystal Growth & Design, 2022, 22(6): 3845-3852. [16] NASALEVICH M A, VAN DER VEEN M, KAPTEIJN F, et al. Metal-organic frameworks as heterogeneous photocatalysts: advantages and challenges[J]. CrystEngComm, 2014, 16(23): 4919-4926. [17] WEN L L, ZHAO J B, LV K L, et al. Visible-light-driven photocatalysts of metal-organic frameworks derived from multi-carboxylic acid and imidazole-based spacer[J]. Crystal Growth & Design, 2012, 12(3): 1603-1612. [18] HSU Y F, LIN C H, CHEN J D, et al. A novel interpenetrating diamondoid network from self-assembly of N, N’-di(4-pyridyl)adipoamide and copper sulfate: an unusual 12-fold,[6 + 6]mode[J]. Crystal Growth & Design, 2008, 8(4): 1094-1096. [19] SHELDRICK G M. A short history of SHELX[J]. Acta Crystallographica Section A, Foundations of Crystallography, 2008, 64(1): 112-122. [20] DOLOMANOV O V, BOURHIS L J, GILDEA R J, et al. OLEX2: a complete structure solution, refinement and analysis program[J]. Journal of Applied Crystallography, 2009, 42(42): 339-341. [21] EHRHARD A A, GUNKEL L, JÄGER S, et al. Elucidating conformation and hydrogen-bonding motifs of reactive thiourea intermediates[J]. ACS Catalysis, 2022, 12(20): 12689-12700. [22] YANG L, WANG F, AUPHEDEOUS D I Y, et al. Achiral isomers controlled circularly polarized luminescence in supramolecular hydrogels[J]. Nanoscale, 2019, 11(30): 14210-14215. [23] JI H, NAVEEN K, LEE W, et al. Pyridinium-functionalized ionic metal-organic frameworks designed as bifunctional catalysts for CO2 fixation into cyclic carbonates[J]. ACS Applied Materials & Interfaces, 2020, 12(22): 24868-24876. |