[1] SHI J H. Identifying the influence of natural and human factors on seasonal water quality in China: current situation of China’s water environment and policy impact[J]. Environmental Science and Pollution Research, 2023, 30(47): 104852-104869. [2] WANG S F, LI Y, LIU Q, et al. Photo-/electro-/piezo-catalytic elimination of environmental pollutants[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 437: 114435. [3] ZHOU T H, ZHAI T J, SHEN H D, et al. Strategies for enhancing performance of perovskite bismuth ferrite photocatalysts (BiFeO3): a comprehensive review[J]. Chemosphere, 2023, 339: 139678. [4] MUSIE W, GONFA G. Fresh water resource, scarcity, water salinity challenges and possible remedies: a review[J]. Heliyon, 2023, 9(8): e18685. [5] LI D Y, XU K, NIU Z Y, et al. Annealing and plasma effects on the structural and photocatalytic properties of TiO2 fibers produced by electrospinning[J]. Catalysts, 2022, 12(11): 1441. [6] KUTUZOVA A, DONTSOVA T, KWAPINSKI W. Application of TiO2-based photocatalysts to antibiotics degradation: cases of sulfamethoxazole, trimethoprim and ciprofloxacin[J]. Catalysts, 2021, 11(6): 728. [7] 匡代洪, 杜 泽, 林 宁. 铁酸铋的制备及其在废水中的应用研究进展[J]. 科学技术与工程, 2022, 22(4): 1299-1307. KUANG D H, DU Z, LIN N. Research progress on the preparation of BiFeO3 and its application in wastewater[J]. Science Technology and Engineering, 2022, 22(4): 1299-1307 (in Chinese). [8] YAN F X, ZHAO G Y, SONG N, et al. In situ synthesis and characterization of fine-patterned La and Mn co-doped BiFeO3 film[J]. Journal of Alloys and Compounds, 2013, 570: 19-22. [9] HASELMANN U, RADLINGER T, PEI W J, et al. Ca solubility in a BiFeO3-based system with a secondary Bi2O3 phase on a nanoscale[J]. The Journal of Physical Chemistry C, Nanomaterials and Interfaces, 2022, 126(17): 7696-7703. [10] 余海燕, 梁海欧, 白 杰, 等. 铜基硫化物光催化改性研究进展[J]. 人工晶体学报, 2023, 52(3): 394-404. YU H Y, LIANG H O, BAI J, et al. Research progress of photocatalytic modification of copper based sulfides[J]. Journal of Synthetic Crystals, 2023, 52(3): 394-404 (in Chinese). [11] CAGLAR B, İÇER F, ÖZDOKUR K V, et al. A novel amperometric H2O2 biosensor constructed by cress peroxidase entrapped on BiFeO3 nanoparticles[J]. Materials Chemistry and Physics, 2021, 262: 124287. [12] INDRIYANI A, YULIZAR Y, TRI YUNARTI R, et al. One-pot green fabrication of BiFeO3 nanoparticles via Abelmoschus esculentus L. leaves extracts for photocatalytic dye degradation[J]. Applied Surface Science, 2021, 563: 150113. [13] GUMIEL C, CALATAYUD D G. Thin film processing of multiferroic BiFeO3: from sophistication to simplicity. A review[J]. Boletín De La Sociedad Espaola De Cerámica y Vidrio, 2022, 61(6): 708-732. [14] OLADIPO A A, MUSTAFA F S. Bismuth-based nanostructured photocatalysts for the remediation of antibiotics and organic dyes[J]. Beilstein Journal of Nanotechnology, 2023, 14: 291-321. [15] THOMAS N, DIONYSIOU D D, PILLAI S C. Heterogeneous Fenton catalysts: a review of recent advances[J]. Journal of Hazardous Materials, 2021, 404(Pt B): 124082. [16] 王丹丹, 刘文强, 赵 林, 等. 形貌调控及掺杂改性对TiO2催化剂光催化性能的影响[J]. 人工晶体学报, 2024, 53(5): 824-832. WANG D D, LIU W Q, ZHAO L, et al. Morphology regulation and doping modification on the photocatalytic properties of TiO2 catalyst[J]. Journal of Synthetic Crystals, 2024, 53(5): 824-832 (in Chinese). [17] 刘 杨, 张永丽, 周 鹏. 软铋矿铁酸铋活化过一硫酸盐降解环丙沙星机理及产物研究[J]. 工程科学与技术, 2022, 54(5): 203-209. LIU Y, ZHANG Y L, ZHOU P. Study on mechanism and products of degradation of ciprofloxacin by sillenite bismuth ferrite-activated persulfate[J]. Advanced Engineering Sciences, 2022, 54(5): 203-209 (in Chinese). [18] AHAD A, PODDER J, SAHA T, et al. Effect of chromium doping on the band gap tuning of titanium dioxide thin films for solar cell applications[J]. Heliyon, 2024, 10(1): 23096. [19] ABDULLAH J A A, JIMÉNEZ-ROSADO M, GUERRERO A, et al. Effect of calcination temperature and time on the synthesis of iron oxide nanoparticles: green vs. chemical method[J]. Materials, 2023, 16(5): 1798. [20] SU K, HUANG K, YANG H, et al. Structural and magnetic properties on Sr-substituted BiFeO3 perovskite nanoferrites[J]. Transactions on Condensed Matter Physics, 2022, 1(1): 1-6. [21] SANGA P, WANG J J, LI X, et al. Effective removal of sulfonamides using recyclable MXene-decorated bismuth ferrite nanocomposites prepared via hydrothermal method[J]. Molecules, 2023, 28(4): 1541. [22] PREETHA R, GOVINDA RAJ M, VIJAYAKUMAR E, et al. Promoting photocatalytic interaction of boron doped reduced graphene oxide supported BiFeO3 nanocomposite for visible-light-induced organic pollutant degradation[J]. Journal of Alloys and Compounds, 2022, 904: 164038. [23] WANG L K, WANG J F, YE C Y, et al. Photodeposition of CoOx nanoparticles on BiFeO3 nanodisk for efficiently piezocatalytic degradation of rhodamine B by utilizing ultrasonic vibration energy[J]. Ultrasonics Sonochemistry, 2021, 80: 105813. [24] YE Y C, YANG H, WANG X X, et al. Photocatalytic, Fenton and photo-Fenton degradation of RhB over Z-scheme g-C3N4/LaFeO3 heterojunction photocatalysts[J]. Materials Science in Semiconductor Processing, 2018, 82: 14-24. [25] 杜 泽, 赵尉伶, 匡代洪, 等. BiFe1-xMnxO3纳米粉末的制备及光催化性能[J]. 材料导报, 2023, 37(13): 60-67. DU Z, ZHAO W L, KUANG D H, et al. Preparation and photocatalytic properties of BiFe1-xMnxO3 nano-powders[J]. Materials Reports, 2023, 37(13): 60-67 (in Chinese). [26] KOROTAEV E V, SYROKVASHIN M M, FILATOVA I Y. Thermoelectric and magnetic properties and electronic structure of solid solutions CuCr1-xLaxS2[J]. Journal of Composites Science, 2023, 7(10): 436. [27] LIU Z F, TAN Y Q, RUAN X F, et al. Spark plasma sintering-assisted synthesis of Bi2Fe4O9/Bi25FeO40 heterostructures with enhanced photocatalytic activity for removal of antibiotics[J]. International Journal of Molecular Sciences, 2022, 23(20): 12652. [28] 田 野, 闫 哲, 刘建新, 等. RuO2/BiOCl复合光催化剂的制备及其固氮性能研究[J]. 人工晶体学报, 2023, 52(10): 1872-1879. TIAN Y, YAN Z, LIU J X, et al. Preparation of RuO2/BiOCl composite photocatalysts and its nitrogen fixation performance[J]. Journal of Synthetic Crystals, 2023, 52(10): 1872-1879 (in Chinese). [29] 周添红, 王金怡, 苏 旭, 等. 基于尖晶石型CoFe2O4高级氧化降解水中有机污染物研究进展[J/OL]. 化工进展: 1-28[2024-07-05]. https://doi.org/10.16085/j.issn.1000-6613.2023-1773. ZHOU T H, WANG J Y, SU X, et al. Research progress on advanced oxidation degradation of organic pollutants in water based on spinel type CoFe2O4[J/OL]. Chemical Industry and Engineering Progress: 1-28[2024-07-05]. https://doi.org/10.16085/j.issn.1000-6613.2023-1773 (in Chinese). [30] 王泽岩, 王 朋, 刘媛媛, 等. 基于晶体学原理的高效光催化材料的设计与制备[J]. 人工晶体学报, 2021, 50(4): 685-707. WANG Z Y, WANG P, LIU Y Y, et al. Design and synthesis of efficient photocatalyst based on the principal of crystallography[J]. Journal of Synthetic Crystals, 2021, 50(4): 685-707 (in Chinese). [31] LAM S M, JAFFARI Z H, SIN J C, et al. Insight into the influence of noble metal decorated on BiFeO3 for 2, 4-dichlorophenol and real herbicide wastewater treatment under visible light[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 614: 126138. [32] 李 艳, 李 卓, 刘恩周. NiMoO4/ZnIn2S4 S-scheme异质结的制备及光催化产氢性能增强机制[J]. 聊城大学学报(自然科学版), 2023, 36(2): 1-10. LI Y, LI Z, LIU E Z. Preparation of NiMoO4/ZnIn2S4 S-scheme heterojunctions and enhancement mechanism of photocatalytic hydrogen production[J]. Journal of Liaocheng University (Natural Science Edition), 2023, 36(2): 1-10 (in Chinese). [33] GHORBANI M, SHEIBANI S, ABDIZADEH H, et al. Modified BiFeO3/rGO nanocomposite by controlled synthesis to enhance adsorption and visible-light photocatalytic activity[J]. Journal of Materials Research and Technology, 2023, 22: 1250-1267. [34] LI X Y, TANG Z X, MA H D, et al. PVP-assisted hydrothermal synthesis and photocatalytic activity of single-crystalline BiFeO3 nanorods[J]. Applied Physics A, 2019, 125(9): 598. [35] SATHIYA PRIYA A, GEETHA D, HENRY J. Effect of Cu and Sm doping on the ferroelectric character of bismuth ferrite thin films[J]. Phosphorus, Sulfur, and Silicon and the Related Elements, 2022, 197(3): 158-163. [36] PRIYA A S, GEETHA D, SIQUEIROS J M, et al. Tunable optical and multiferroic properties of zirconium and dysprosium substituted bismuth ferrite thin films[J]. Molecules, 2022, 27(21): 7565. [37] XU H X, XU J H, LI H B, et al. Highly sensitive ethanol and acetone gas sensors with reduced working temperature based on Sr-doped BiFeO3 nanomaterial[J]. Journal of Materials Research and Technology, 2022, 17: 1955-1963. [38] JEVTIĆ I, JAKŠIĆ S, ŠOJIĆ MERKULOV D, et al. Matrix effects of different water types on the efficiency of fumonisin B1 removal by photolysis and photocatalysis using ternary- and binary-structured ZnO-based nanocrystallites[J]. Catalysts, 2023, 13(2): 375. [39] KAMIL F H, BARNO S K A, SHEMS F, et al. Photocatalytic degradation of sulfamethoxazole from a synthetic pharmaceutical wastewater using titanium dioxide (TiO2) powder as a suspended heterogeneous catalyst[J]. Iraqi Journal of Industrial Research, 2023, 10(1): 26-33. [40] GHERBI B, LAOUINI S E, MENECEUR S, et al. Effect of pH value on the bandgap energy and particles size for biosynthesis of ZnO nanoparticles: efficiency for photocatalytic adsorption of methyl orange[J]. Sustainability, 2022, 14(18): 11300. [41] NGO H S, NGUYEN T L, TRAN N T, et al. Photocatalytic removal of ciprofloxacin in water by novel sandwich-like CuFe2O4 on rGO/halloysite material: insights into kinetics and intermediate reactive radicals[J]. Water, 2023, 15(8): 1569. [42] 刘慧婷, 杜隆达, 覃礼堂. SrWO4光催化剂的制备及其光催化降解盐酸金霉素的研究[J]. 日用化学工业, 2023, 53(12): 1377-1384. LIU H T, DU L D, QIN L T. Preparation of SrWO4 photocatalyst and its photocatalytic degradation of chlortetracycline hydrochloride[J]. China Surfactant Detergent & Cosmetics, 2023, 53(12): 1377-1384 (in Chinese). [43] LIN X H, ZHOU W M, LI S Y, et al. Photodegradation of sulfamethoxazole and enrofloxacin under UV and simulated solar light irradiation[J]. Water, 2023, 15(3): 517. [44] RAD S M, RAY A K, BARGHI S. Enhancing photon transfer efficiency in photocatalysis using suspended LED lights for water treatment[J]. Reactions, 2023, 4(2): 246-253. |