[1] 杨成伟, 陈千颂, 熊 轲, 等. Cr4+∶ YAG被动调Q激光器进展[J]. 激光与红外, 2003, 33(1): 21-24. YANG C W, CHEN Q S, XIONG K, et al. Recent developments on Cr4+∶YAG passively Q-switched lasers[J]. Laser & Infrared, 2003, 33(1): 21-24 (in Chinese). [2] 张行愚, 赵圣之, 王青圃, 等. Cr4+∶YAG调Q特性的理论和实验研究[J]. 光学学报, 1998, 18(9): 1180-1185. ZHANG X Y, ZHAO S Z, WANG Q P, et al. Theoretical and experimental study on Q-switched characteristics of Cr4+∶YAG[J]. Acta Optica Sinica, 1998, 18(9): 1180-1185 (in Chinese). [3] YAGI H, TAKAICHI K, UEDA K, et al. The physical properties of composite YAG ceramics[J]. Laser Physics, 2005, 15(9): 1338-1344. [4] TANG F, CAO Y G, HUANG J Q, et al. Fabrication and laser behavior of composite Yb∶YAG ceramic[J]. Journal of the American Ceramic Society, 2012, 95(1): 56-69. [5] YAGI H, TAKAICHI K, UEDA K I, et al. Influence of annealing conditions on the optical properties of chromium-doped ceramic Y3Al5O12[J]. Optical Materials, 2006, 29(4): 392-396. [6] CHEN X T, LU T C, WEI N, et al. Fabrication and photoluminescence properties of Cr∶YAG and Yb, Cr∶YAG transparent ceramic[J]. Optical Materials, 2015, 49: 330-336. [7] ZHOU T Y, ZHANG L, LI Z, et al. Enhanced conversion efficiency of Cr4+ ion in Cr∶YAG transparent ceramic by optimizing the annealing process and doping concentration[J]. Journal of Alloys and Compounds, 2017, 703: 34-39. [8] DOROSHENKO A G, YAVETSKIY R P, PARKHOMENKO S V, et al. Effect of the sintering temperature on the microstructure and optical properties of YAG∶Cr, Mg ceramics[J]. Optical Materials, 2019, 98: 109505. [9] CHAIKA M, MANCARDI G, TOMALA R, et al. Effects of divalent dopants on the microstructure and conversion efficiency of Cr4+ ions in Cr, Me∶YAG (Me-Ca, Mg, Ca/Mg) transparent ceramics[J]. Processing and Application of Ceramics, 2020, 14(1): 83-89. [10] GOŁĘBIEWSKI P, WĘGLARZ H, NAKIELSKA M, et al. Effect of Ca2+ and Mg2+ ions on the sintering and spectroscopic properties of Cr-doped yttrium aluminum garnet ceramics[J]. International Journal of Applied Ceramic Technology, 2021, 18(3): 697-704. [11] 崔 鑫, 张 彬, 应建新, 等. 气孔对透明陶瓷激光输出性能的影响[J]. 强激光与粒子束, 2013, 25(7): 1625-1629. CUI X, ZHANG B, YING J X, et al. Influence of pores on laser performance of transparent laser ceramics[J]. High Power Laser and Particle Beams, 2013, 25(7): 1625-1629 (in Chinese). [12] IKESUE A, AUNG Y L. Synthesis of Yb∶YAG ceramics without sintering additives and their performance[J]. Journal of the American Ceramic Society, 2017, 100(1): 26-30. [13] AUNG Y L, IKESUE A. Development of optical grade (TbxY1-x)3Al5O12 ceramics as Faraday rotator material[J]. Journal of the American Ceramic Society, 2017, 100(9): 4081-4087. [14] FENG Y G, LIU Z Y, TOCI G, et al. Fabrication, microstructure, spectral properties, and laser performance of Yb∶GdxY3-xAl5O12 ceramics[J]. Journal of the American Ceramic Society, 2024, 107(6): 4134-4146. [15] ZHANG L, ZHOU T Y, SELIM F A, et al. Single CaO accelerated densification and microstructure control of highly transparent YAG ceramic[J]. Journal of the American Ceramic Society, 2018, 101(2): 703-712. [16] ZHOU T Y, ZHANG L, LI Z, et al. Toward vacuum sintering of YAG transparent ceramic using divalent dopant as sintering aids: investigation of microstructural evolution and optical property[J]. Ceramics International, 2017, 43(3): 3140-3146. [17] SHANNON R D, PREWITT C T. Effective ionic radii in oxides and fluorides[J]. Acta Crystallographica Section B, 1969, 25(5): 925-946. [18] MARKGRAF S A, PANGBORN M F, DIECKMANN R. Influence of different divalent co-dopants on the Cr4+ content of Cr-doped Y3Al5O12[J]. Journal of Crystal Growth, 1997, 180(1): 81-84. [19] PERRIÈRE C, BOULESTEIX R, MAÎTRE A, et al. Study of sintering mechanisms of Ca-doped yttrium aluminum garnet ceramics: from nanostructure to macroscopic behaviour[J]. Journal of the European Ceramic Society, 2023, 43(2): 565-575. [20] VORONA I, BALABANOV A, DOBROTVORSKA M, et al. Effect of MgO doping on the structure and optical properties of YAG transparent ceramics[J]. Journal of the European Ceramic Society, 2020, 40(3): 861-866. [21] PERRIÈRE C, BOULESTEIX R, MAÎTRE A, et al. Study of dopant distribution in Cr4+∶YAG transparent ceramics and its use as passively Q-switching media in Nd∶YAG laser delivering 38 mJ per pulse[J]. Optical Materials: X, 2021, 12: 100107. [22] ZHOU T Y, ZHANG L, WEI S, et al. MgO assisted densification of highly transparent YAG ceramics and their microstructural evolution[J]. Journal of the European Ceramic Society, 2018, 38(2): 687-693. [23] ZHANG P D, CHAI B Y, JIANG B X, et al. High transparency Cr, Nd∶LuAG ceramics prepared with MgO additive[J]. Journal of the European Ceramic Society, 2017, 37(6): 2459-2463. [24] CHEN X T, WU Y Q, LU Z W, et al. Assessment of conversion efficiency of Cr4+ ions by aliovalent cation additives in Cr∶YAG ceramic for edge cladding[J]. Journal of the American Ceramic Society, 2018, 101(11): 5098-5109. [25] 黄朝红, 肖敬忠, 张庆礼, 等. 新型Q开关晶体Cr4+∶YAG的生长和被动调Q研究[J]. 量子电子学报, 2003, 20(1): 26-29. HUANG C H, XIAO J Z, ZHANG Q L, et al. Research on crystal growth and passively Q-switching of Cr4+∶YAG[J]. Chinese Journal of Quantum Electronics, 2003, 20(1): 26-29 (in Chinese). [26] WALL W A, KARPICK J T, DI BARTOLO B. Temperature dependence of the vibronic spectrum and fluorescence lifetime of YAG∶Cr3+[J]. Journal of Physics C: Solid State Physics, 1971, 4(18): 3258-3264. [27] BURNS G, GEISS E A, JENKINS B A, et al. Cr3+ fluorescence in garnets and other crystals[J]. Physical Review, 1965, 139(5A): 1687-1693. [28] CHAIKA M A, DULINA N A, DOROSHENKO A G, et al. Influence of calcium concentration on formation of tetravalent chromium doped Y3Al5O12 ceramics[J]. Ceramics International, 2018, 44(12): 13513-13519. [29] ZHOU T Y, ZHANG L, ZHANG J, et al. Improved conversion efficiency of Cr4+ ions in Cr∶YAG transparent ceramics by optimization the particle sizes of sintering aids[J]. Optical Materials, 2015, 50: 11-14. |