[1] IVANOVA G N, KASIYAN V A, NEDEOGLO N D, et al. The structure of high-temperature blue luminescence centers in zinc selenide and mechanisms of this luminescence. Semiconductors, 1998, 32(2): 160-163. [2] 薛大顺, 吴洪才. ZnSe制备技术研究进展. 光电子技术与信息, 2004(2): 1-5. XUE D S, WU H C. Research development of growth methods of ZnSe[J]. Optoelectronic Technology & Information, 2004(2): 1-5 (in Chinese). [3] LIN M J, WANG W Z. Passivation of ZnSe nanoparticles in sandwiched CdSe/ZnSe/ZnO nanotube array photoanode to substantially enhance solar photoelectrochemical water splitting for hydrogen evolution[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 614: 126206. [4] ALEX H, JAMES K, CARLY M, et al. Vacuum transport of transition metal-doped ZnSe fiber lasers[J]. Abstracts of Papers of The American Chemical Society, 2019, 258(3): 281-283. [5] ZHEN L, DAVID R, CHAO W. 2D transition metal chalcogenides for electrocatalytic applications[J]. Abstracts of Papers of The American Chemical Society, 2014, 247(1): 271. [6] FU H X, LI J. Density-functional study of organic-inorganic hybrid single crystal ZnSe(C2H8 N2)1/2[J]. Journal of Chemical Physics, 2004, 120(14): 6721-6725. [7] WU H Q, LINGHU C Y, LU H M, et al. Graphene applications in electronic and optoelectronic devices and circuits[J]. Chinese Physics B, 2013, 22(9): 098106. [8] YANG H, QIN S Q, ZHENG X M, et al. An Al2O3 gating substrate for the greater performance of field effect transistors based on two-dimensional materials[J]. Nanomaterials, 2017, 7(10): 286. [9] DAS T, AHN J H. Development of electronic devices based on two-dimensional materials[J]. FlatChem, 2017, 3: 43-63. [10] ZHU K C, WEN C, ALJARB A A, et al. The development of integrated circuits based on two-dimensional materials[J]. Nature Electronics, 2021, 4: 775-785. [11] 庞国旺, 刘晨曦, 潘多桥, 等. 非金属元素(F, S, Se, Te)掺杂对ZnO/graphene肖特基界面电荷及肖特基调控的理论研究[J]. 人工晶体学报, 2022, 51(4): 628-636. PANG G W, LIU C X, PAN D Q, et al. Theoretical study on Schottky interfacial charge and Schottky regulation of ZnO/graphene by doping of nonmetallic elements (F, S, Se, Te)[J]. Journal of Synthetic Crystals, 2022, 51(4): 628-636 (in Chinese). [12] LIU Z, SONG L, ZHAO S Z, et al. Direct growth of graphene/hexagonal boron nitride stacked layers[J]. Nano Letters, 2011, 11(5): 2032-2037. [13] SUN M L, CHOUJ P, REN Q Q, et al. Tunable Schottky barrier in van der Waals heterostructures of graphene and g-GaN[J]. Applied Physics Letters, 2017, 110(17): 173105. [14] PHUC H V, HIEU N N, HOI B D, et al. Interlayer coupling and electric field tunable electronic properties and Schottky barrier in a graphene/bilayer-GaSe van der Waals heterostructure[J]. Physical Chemistry Chemical Physics, 2018, 20(26): 17899-17908. [15] LU A K A, HOUSSA M, RADU I P, et al. Toward an understanding of the electric field-induced electrostatic doping in van der Waals heterostructures: a first-principles study[J]. ACS Applied Materials & Interfaces, 2017, 9(8): 7725-7734. [16] NIE Y F, HONG S, WALLACE R M, et al. Theoretical demonstration of the ionic barristor[J]. Nano Letters, 2016, 16(3): 2090-2095. [17] WANG S K, CHOU J P, REN C D, et al. Tunable Schottky barrier in graphene/graphene-like germanium carbide van der Waals heterostructure[J]. Scientific Reports, 2019, 9(1): 5208. [18] LV L L, SHEN Y Q, MA Y Y, et al. Schottky barrier modification of GaSSe/graphene heterojunctions based on density functional theory[J]. Journal of Physics D: Applied Physics, 2021, 54(15): 155104. [19] 汤家鑫, 李占海, 邓小清, 等. GaN/VSe2电接触特性及调控效应[J]. 物理学报, 2023, 72(16): 167101. TANG J X, LI Z H, DENG X Q, et al. Electrical contact characteristics and regulatory effects of GaN/VSe2 van der Waals heterojunction[J]. Acta Physica Sinica, 2023, 72(16): 167101 (in Chinese). [20] ZHANG Y F, WEI J M, LIU T Y, et al. Tunable properties of ZnSe/graphene heterostructure as a promising candidate for photo/electro-catalyst applications[J]. Applied Surface Science, 2022, 574: 151679. [21] HAFNER J. Ab-initio simulations of materials using VASP: density-functional theory and beyond[J]. Journal of Computational Chemistry, 2008, 29(13): 2044-2078. [22] WELSH I D, CRITTENDEN D L. New atoms-in-molecules dispersion models for use in ab initio derived force fields[J]. Journal of Chemical Physics, 2021, 154(9): 094118. [23] CHOUDHARY K, TAVAZZA F. Convergence and machine learning predictions of Monkhorst-Pack k-points and plane-wave cut-off in high-throughput DFT calculations[J]. Computational Materials Science, 2019, 161: 300-308. [24] WANG M C, LIU Y, CHEN H, et al. First-principles calculations of interfacial structure and properties between WC substrate and TiN coating based on density functional theory[J]. Coatings, 2022, 12(8): 1076. [25] SARTIKA V D, CHOI W S, CHOI G, et al. Joining dissimilar metal of Ti and CoCrMo using directed energy deposition[J]. Journal of Materials Science & Technology, 2022, 111: 99-110. [26] ASIF KHAN M, YANG J W, SIMIN G, et al. Energy band/lattice mismatch engineering in quaternary AlInGaN/GaN heterostructure[J]. Physica Status Solidi (a), 1999, 176(1): 227-230. [27] TAO J M, PERDEW J P, RUZSINSZKY A. Long-range van der waals interaction[J]. International Journal of Modern Physics B, 2013, 27(18): 1330011. [28] LI H, WU J B, RAN F R, et al. Interfacial interactions in van der Waals heterostructures of MoS2 and graphene[J]. ACS Nano, 2017, 11(11): 11714-11723. [29] 郭 雷, 胡 舸, 张胜涛. ZnSe掺Cu与Zn空位缺陷的稳定性、电子结构与光学性质[J]. 物理化学学报, 2012, 28(12): 2845-2851. GUO L, GUO L, ZHANG S T. Stability, electronic structure and optical properties of ZnSe doped Cu and Zn vacancy defects[J]. Acta Physico-Chimica Sinica, 2012, 28(12): 2845-2851 (in Chinese). [30] 倪 晨. 掺杂对二维半导体带隙的调控[J]. 科学技术创新, 2021(2): 45-46. NI C. Regulation of doping on two-dimensional semiconductor band gap[J]. Scientific and Technological Innovation, 2021(2): 45-46 (in Chinese). [31] QIAO H, LIU H T, HUANG Z Y, et al. Tunable electronic and optical properties of 2D monoelemental materials beyond graphene for promising applications[J]. Energy & Environmental Materials, 2021, 4(4): 522-543. [32] TUNG R T. The physics and chemistry of the Schottky barrier height[J]. 2014, 1(1): 011304. [33] XU Y, SCHOONEN M A A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals[J]. American Mineralogist, 2000, 85(3/4): 543-556. |