[1] 李 苹, 陈 卫. 一维纳米材料在能源电催化中的研究进展(英文)[J]. 催化学报, 2019, 40(1): 4-22. LI P, CHEN W. Recent advances in one-dimensional nanostructures for energy electrocatalysis[J]. Chinese Journal of Catalysis, 2019, 40(1): 4-22. [2] 阳 缘. 硒、碲基一维纳米材料的模板法制备及其应用研究[D]. 合肥: 中国科学技术大学, 2017. YANG Y. Preparation and application of one-dimensional nanomaterials based on selenium and tellurium by template method[D]. Hefei: University of Science and Technology of China, 2017 (in Chinese). [3] CHAUDHARY S, MEHTA S K. Selenium nanomaterials: applications in electronics, catalysis and sensors[J]. Journal of Nanoscience and Nanotechnology, 2014, 14(2): 1658-1674. [4] KUMAR A, PRASAD K S. Role of nano-selenium in health and environment[J]. Journal of Biotechnology, 2021, 325: 152-163. [5] YANG J, GAO H C, KANG X W. Nanomaterials application in Li-Se and Na-Se batteries[M]//Advanced Nanomaterials for Electrochemical-Based Energy Conversion and Storage. Amsterdam: Elsevier, 2020: 69-114. [6] 姜 豹, 汪礼胜, 曹功辉, 等. 硒化镉纳米线在应力作用下的第一性原理研究[J]. 人工晶体学报, 2019, 48(7): 1275-1280. JIANG B, WANG L S, CAO G H, et al. First-principles study on cadmium selenide nanowires under strain[J]. Journal of Synthetic Crystals, 2019, 48(7): 1275-1280 (in Chinese). [7] CHAUDHARY S, UMAR A, MEHTA S K. Selenium nanomaterials: an overview of recent developments in synthesis, properties and potential applications[J]. Progress in Materials Science, 2016, 83: 270-329. [8] LEI W B, XU W Q, et al. Facile synthesis and growth mechanism of trigonal selenium nanowries[J]. Chalcogenide Letters, 2020, 17(12): 615-621. [9] QI R J, CHENG Y. Synthesis of Se nanowires at room temperature using selenourea as Se source[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(8): 5843-5847. [10] CHINTALA K M, PANCHAL S, RANA P, et al. Structural, optical and electrical properties of gamma-rays exposed selenium nanowires[J]. Journal of Materials Science: Materials in Electronics, 2016, 27(8): 8087-8093. [11] FILIPPO E, MANNO D, SERRA A. Characterization and growth mechanism of selenium microtubes synthesized by a vapor phase deposition route[J]. Crystal Growth & Design, 2010, 10(11): 4890-4897. [12] LIU H, FAN L, WEI Q, et al. Preparation of single crystal triangular selenium nanostructures and photoelectric properties[J]. Materials Express: an International Journal on Multidisciplinary Materials Research, 2022. DOI: 10.1166/mex.2022.2189. [13] KUMAR S, SINGH S, BERA S, et al. One pot facile synthesis of selenium nanostructures by microwave assisted solvothermal process[C]//AIP Conference Proceedings. Indore, India. Author(s), 2019, 2100: 020120. [14] CAO G S, ZHANG X J, SU L, et al. Hydrothermal synthesis of selenium and tellurium nanorods[J]. Journal of Experimental Nanoscience, 2011, 6(2): 121-126. [15] 魏代玲, 甘自保, 张 旭, 等. 超声辅助法控制合成三方相硒纳米管[J]. 人工晶体学报, 2010, 39(4): 1030-1034. WEI D L, GAN Z B, ZHANG X, et al. Controllable synthesis of trigonal selenium nanotubes by ultrasounnic-assisted method[J]. Journal of Synthetic Crystals, 2010, 39(4): 1030-1034 (in Chinese). [16] LIAO F, HAN X R, ZHANG Y F, et al. CTAB-assisted solvothermal synthesis of ultralong t-selenium nanowires and bundles using glucose as green reducing agent[J]. Materials Letters, 2018, 214: 41-44. [17] HU H, LIU F C, SHEN Z L, et al. Amorphous selenium and crystalline selenium nanorods graphene composites as cathode materials for all-solid-state lithium selenium batteries[J]. Chemistry Open, 2022, 11(3): 202100296. [18] JAMIL S, FAROOQ F, KHAN S R, et al. Synthesis of WSe2 nanorods by selenium powder precursor for photocatalytic application and fuel additive[J]. Journal of Cluster Science, 2021, 32(4): 1061-1073. [19] PANCHAL S, CHAUHAN R P. Lithium ion beam impact on selenium nanowires[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 87: 37-43. [20] AHMAD A, ULLAH S, KHAN A, et al. Graphene oxide selenium nanorod composite as a stable electrode material for energy storage devices[J]. Applied Nanoscience, 2020, 10(4): 1243-1255. [21] YU B, YOU P T, SONG M F, et al. A facile and fast synthetic approach to create selenium nanoparticles with diverse shapes and their antioxidation ability[J]. New Journal of Chemistry, 2016, 40(2): 1118-1123. [22] PRESENTATO A, PIACENZA E, ANIKOVSKIY M, et al. Biosynthesis of selenium-nanoparticles and-nanorods as a product of selenite bioconversion by the aerobic bacterium rhodococcus aetherivorans BCP1[J]. New Biotechnology, 2018, 41: 1-8. [23] VELAYATI M, HASSANI H, DARROUDI M. Green synthesis of Se-nanorods using poly anionic cellulose (PAC) and examination of their photocatalytic and cytotoxicity effects[J]. Inorganic Chemistry Communications, 2021, 133: 108935. [24] TUYEN N N K, HUY V K, DUY N H, et al. Green synthesis of selenium nanorods using muntigia calabura leaf extract: effect of pH on characterization and bioactivities[J]. Waste and Biomass Valorization, 2024, 15(4): 1987-1998. [25] YANG Z, ZUO Y G, DAI L Q, et al. Effect of ultrasonic-induced selenium crystallization behavior during selenium reduction[J]. Ultrasonics Sonochemistry, 2023, 95: 106392. [26] LI Q, CHEN T F, YANG F, et al. Facile and controllable one-step fabrication of selenium nanoparticles assisted by l-cysteine[J]. Materials Letters, 2010, 64(5): 614-617. [27] GHADERI R S, ADIBIAN F, SABOURI Z, et al. Green synthesis of selenium nanoparticle by Abelmoschus esculentus extract and assessment of its antibacterial activity[J]. Materials Technology, 2022, 37(10): 1289-1297. [28] ZHANG R F, TIAN X K, MA L L, et al. Visible-light-responsive t-Se nanorod photocatalysts: synthesis, properties, and mechanism[J]. RSC Advances, 2015, 5(56): 45165-45171. [29] MISHCHENKO A. Amorphous selenium (α-Se) and its compounds: photo-induced metastability and application in a novel gamma camera[D]. Canada: Lakehead University, 2016. [30] MA Y, QI L, MA J, et al. Micelle-mediated synthesis of single-crystalline selenium nanotubes[J]. Advanced Materials, 2004, 16(12): 1023-1026. |