[1] GRIDNEVA I V, MILMAN Y V, TREFILOV V I. Phase transition in diamond-structure crystals during hardness measurements[J]. Physica Status Solidi (a), 1972, 14(1): 177-182. [2] FIELD J E. The mechanical and strength properties of diamond[J]. Reports on Progress in Physics, 2012, 75(12): 126505. [3] UMEZAWA H. Recent advances in diamond power semiconductor devices[J]. Materials Science in Semiconductor Processing, 2018, 78: 147-156. [4] TU J P, LIU J L, YAO L, et al. Small-angle X-ray scattering performances of single crystal and polycrystalline diamond windows in a heated environment[J]. Journal of Materials Science, 2022, 57(27): 12824-12835. [5] BUNDY F P, HALL H T, STRONG H M, et al. Man-made diamonds[J]. Nature, 1955, 176(4471): 51-55. [6] MARTINEAU P M, LAWSON S C, TAYLOR A J, et al. Identification of synthetic diamond grown using chemical vapor deposition (CVD)[J]. Gems & Gemology, 2004, 40(1): 2-25. [7] WENTORF R H Jr. Diamond growth rates[J]. The Journal of Physical Chemistry, 1971, 75(12): 1833-1837. [8] ZHANG F Q, XIE E Q, YANG B, et al. Synthesis and infrared absorption characteristics of boron-doped semiconducting diamond thin films[J]. Materials Letters, 1994, 19(3/4): 115-118. [9] NEUMARK G F. Achievement of well conducting wide band-gap semiconductors: role of solubility and of nonequilibrium impurity incorporation[J]. Physical Review Letters, 1989, 62(15): 1800-1803. [10] OKANO K, KIYOTA H, IWASAKI T, et al. Synthesis of n-type semiconducting diamond film using diphosphorus pentaoxide as the doping source[J]. Applied Physics A, 1990, 51(4): 344-346. [11] PINAULT M A, BARJON J, KOCINIEWSKI T, et al. The n-type doping of diamond: present status and pending questions[J]. Physica B: Condensed Matter, 2007, 401/402: 51-56. [12] GOSS J P, EYRE R J, BRIDDON P R. Theoretical models for doping diamond for semiconductor applications[J]. Physica Status Solidi (b), 2008, 245(9): 1679-1700. [13] BUNDY F P, WENTORF R H Jr. Direct transformation of hexagonal boron nitride to denser forms[J]. The Journal of Chemical Physics, 1963, 38(5): 1144-1149. [14] BUNDY F. Methods and mechanisms of synthetic diamond growth[J]. Chemistry and Physics of Carbon, 1973, 10: 213-263. [15] YOU Y E, LI S S, SU T C, et al. Research progress of large diamond single crystals under high pressure and high temperature[J]. Acta Physica Sinica, 2020, 69(23): 238101. [16] CZELEJ K, ŚPIEWAK P, KURZYDŁOWSKI K J. Electronic structure of substitutionally doped diamond: spin-polarized, hybrid density functional theory analysis[J]. Diamond and Related Materials, 2017, 75: 146-151. [17] OKANO K, AKIBA Y, KUROSU T, et al. Synthesis of B-doped diamond film[J]. Journal of Crystal Growth, 1990, 99(1/2/3/4): 1192-1195. [18] EINAGA Y. Development of electrochemical applications of boron-doped diamond electrodes[J]. Bulletin of the Chemical Society of Japan, 2018, 91(12): 1752-1762. [19] 张健琼, 贾晓鹏, 马红安, 等. 掺硼金刚石的高温高压合成[J]. 金刚石与磨料磨具工程, 2005, 25(1): 15-17. ZHANG J Q, JIA X P, MA H A, et al. The synthesis of boron-doped diamond at high pressure and high temperature[J]. Diamond & Abrasives Engineering, 2005, 25(1): 15-17 (in Chinese). [20] XIAO H Y, LI S S, QIN Y K, et al. Studies on synthesis of boron-doped Gem-diamond single crystals under high temperature and high presure[J]. Acta Physica Sinica, 2014, 63(19): 198101. [21] MA L Q, MA H A, XIAO H Y, et al. Effect of additive boron on type-Ib gem diamond single crystals synthesized under HPHT[J]. Chinese Science Bulletin, 2010, 55(8): 677-679. [22] WANG K Y, STEEDS J W, SARUA A. Inhomogeneity distribution of impurities in high temperature high pressure synthesized boron-doped diamond[J]. Diamond and Related Materials, 2022, 130: 109540. [23] WOOD G F, ZVORISTE-WALTERS C E, MUNDAY M G, et al. High pressure high temperature synthesis of highly boron doped diamond microparticles and porous electrodes for electrochemical applications[J]. Carbon, 2021, 171: 845-856. [24] DAI Y, LONG R, HUANG B B, et al. Effect of boron on the superconducting transition of heavily doped diamond[J]. Diamond and Related Materials, 2007, 16(2): 353-358. [25] BOERI L, KORTUS J, KROGH ANDERSEN O. Normal and superconducting state properties of B-doped diamond from first-principles[J]. Science and Technology of Advanced Materials, 2006, 7: S54-S59. [26] SHAKHOV F M, ABYZOV A M, KIDALOV S V, et al. Boron-doped diamond synthesized at high-pressure and high-temperature with metal catalyst[J]. Journal of Physics and Chemistry of Solids, 2017, 103: 224-237. [27] SUMIYA H, SATOH S, NISHIBAYASHI Y, et al. Development of high-purity synthetic diamonds[J]. Sumitomo Electric Technical Review, 1995: 69-69. [28] DAVIES G. The effect of nitrogen impurity on the annealing of radiation damage in diamond[J]. Journal of Physics C: Solid State Physics, 1972, 5(17): 2534-2542. [29] 董秉宇, 张建洪. 钻石的辐射着色处理、色心及光谱特征(一)[J]. 国外非金属矿与宝石, 1990(4): 39-40. DONG B Y, ZHANG J H. Radiation coloring treatment, color center and spectral characteristics of diamonds (1)[J]. China Gems & Jades, 1990(4): 39-40 (in Chinese). [30] 何雪梅. 天然金刚石的红外光谱特征及其分类[J]. 地质与勘探, 2000, 36(4): 45-47. HE X M. Infrared spectrum characteristics and classification of nature diamond[J]. Geology and Prospecting, 2000, 36(4): 45-47 (in Chinese). [31] CHRENKO R M, TUFT R E, STRONG H M. Transformation of the state of nitrogen in diamond[J]. Nature, 1977, 270(5633): 141-144. [32] PUTTICK K E. The properties of natural and synthetic diamond[J]. Tribology International, 1994, 27(3): 208-209. [33] 殷小玲. 金刚石颜色成因探讨[J]. 超硬材料工程, 2007, 19(2): 53-56. YIN X L. Genesis of diamond coloration[J]. Superhard Material Engineering, 2007, 19(2): 53-56 (in Chinese). [34] JOBBINS E A. (B. W.) Anderson. gem testing. London and Boston (butterworths)[J]. Mineralogical Magazine, 1980, 43(332): 1071. [35] 亓利剑, 杨 勇, 罗永安, 等. 辐照处理彩色钻石的缺陷中心及阴极发光谱[J]. 宝石和宝石学杂志, 2000, 2(2): 7-11+64. QI L J, YANG Y, LUO Y A, et al. CL spectrum and defect centres of irradiated colour diamonds[J]. Journal of Gems & Gemmology, 2000, 2(2): 7-11+64 (in Chinese). [36] LIANG Z Z, JIA X P, KANDA H, et al. A new dopant of NaN3 for high-concentration-nitrogen diamond synthesized by HPHT[J]. Chinese Physics Letters, 2007, 24(2): 559-562. [37] WANG J Z, LI S S, HU M H, et al. C3H6N6 doping effect of synthetic diamond under high pressure and high temperature[J]. International Journal of Refractory Metals and Hard Materials, 2020, 87: 105150. [38] PALYANOV Y N, BORZDOV Y M, KHOKHRYAKOV A F, et al. Effect of nitrogen impurity on diamond crystal growth processes[J]. Crystal Growth & Design, 2010, 10(7): 3169-3175. [39] HUANG G F, JIA X P, MA H A, et al. Transformation of nitrogen state in high-level N-doped gem-quality diamond crystal annealed at high temperature and high pressure[J]. Chinese Physics Letters, 2012, 29(10): 106102. [40] ZHENG Y J, HUANG G F, LI Z C, et al. Evolution of nitrogen structure in N-doped diamond crystal after high pressure and high temperature annealing treatment[J]. Chinese Physics B, 2014, 23(11): 118102. [41] NIE Y, LI S S, HU Q, et al. Effects of high pressure and high temperature annealing on the characteristics of HPHT diamonds with high nitrogen content[J]. Optical Materials, 2023, 137: 113538. [42] RUSEVICH L L, KOTOMIN E A, POPOV A I, et al. The vibrational and dielectric properties of diamond with N impurities: first principles study[J]. Diamond and Related Materials, 2022, 130: 109399. [43] KALISH R. The search for donors in diamond[J]. Diamond and Related Materials, 2001, 10(9/10): 1749-1755. [44] TANG L, ZHOU X T, YUE R F, et al. N-type lithium-nitrogen codoping in diamond from first principles[C]//2017 International Conference on Electron Devices and Solid-State Circuits (EDSSC). October 18-20, 2017, Hsinchu, Taiwan, China. IEEE, 2017: 1-2. [45] 周 林, 马红安, 孙普男, 等. NiMnCo-C-S系中掺硫金刚石单晶的研究(英文)[J]. 人工晶体学报, 2011, 40(1): 66-69. ZHOU L, MA H A, SUN P N, et al. Study on sulfur-doped diamond single crystal in NiMnCo-C-S system[J]. Journal of Synthetic Crystals, 2011, 40(1): 66-69. [46] CHEN N, MA H A, FANG C, et al. Synthesis and characterization of IIa-type S-doped diamond in FeNi catalyst under high pressure and high temperature conditions[J]. International Journal of Refractory Metals and Hard Materials, 2017, 66: 122-126. [47] CHEN N, MA H A, CHEN L X, et al. Effects of S on the synthesis of type Ib diamond under high pressure and high temperature[J]. International Journal of Refractory Metals and Hard Materials, 2018, 71: 141-146. [48] ZHANG H, LI S S, SU T C, et al. Large single crystal diamond grown in FeNiMnCo-S-C system under high pressure and high temperature conditions[J]. Chinese Physics B, 2016, 25(11): 118104. [49] WANG J K, LI S S, CUI J L, et al. N-type large single crystal diamond with S doping and B-S co-doping grown in FeNi-C system[J]. International Journal of Refractory Metals and Hard Materials, 2019, 81: 100-110. [50] WANG J K, LI S S, WANG N, et al. Synthesis and characteristics of type Ib diamond doped with NiS as an additive[J]. Chinese Physics Letters, 2019, 36(4): 046101. [51] 聂 媛, 许安涛, 李尚升, 等. 以磷化铁为添加剂沿(111)面生长磷掺杂金刚石大单晶[J]. 人工晶体学报, 2022, 51(4): 587-593. NIE Y, XU A T, LI S S, et al. Growth of P-doped diamond large single crystals along (111) surface with Fe3P as additive[J]. Journal of Synthetic Crystals, 2022, 51(4): 587-593 (in Chinese). [52] GONG C S, LI S S, ZHANG H R, et al. Study on synthesis and electrical properties of slab shape diamond crystals in FeNiMnCo-C-P system under HPHT[J]. International Journal of Refractory Metals and Hard Materials, 2017, 66: 116-121. [53] YU K, LI S, YANG Q, et al. Effects of phosphorus doping via Mn3P2 on diamond growth along the (100) surfaces[J]. CrystEngComm, 2019, 21(44): 6810-6818. [54] 王广文, 邵庆益. 磷掺杂金刚石薄膜的电子结构及空位对其的影响[J]. 中国科学: 物理学 力学 天文学, 2010, 40(7): 869-875. WANG G W, SHAO Q Y. Electronic structure of phosphorus-doped diamond films and the effect of vacancies on them[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2010, 40(7): 869-875 (in Chinese). [55] SITTAS G, KANDA H, KIFLAWI I, et al. Growth and characterization of Si-doped diamond single crystals grown by the HTHP method[J]. Diamond and Related Materials, 1996, 5(6/7/8): 866-869. [56] FANG C, SHEN W X, ZHANG Y W, et al. Si doping effects on the growth of large single-crystal diamond in a Ni-based metal catalyst system under high pressure and high temperature[J]. Crystal Growth & Design, 2019, 19(7): 3955-3961. [57] SOFFNER L T S, DOS SANTOS A A A, TRINDADE D W, et al. HPHT diamond crystallization in the Ni-Mn-C system: effect of Mg additions[J]. Journal of Crystal Growth, 2020, 550: 125888. [58] PALYANOV Y N, KUPRIYANOV I N, BORZDOV Y M, et al. High-pressure synthesis and characterization of Ge-doped single crystal diamond[J]. Crystal Growth & Design, 2016, 16(6): 3510-3518. [59] PALYANOV Y N, KUPRIYANOV I N, BORZDOV Y M. High-pressure synthesis and characterization of Sn-doped single crystal diamond[J]. Carbon, 2019, 143: 769-775. [60] ZHANG H, LI S S, LI G H, et al. Effect of B-S co-doping on large diamonds synthesis under high pressure and high temperature[J]. International Journal of Refractory Metals and Hard Materials, 2017, 66: 26-30. [61] TANG L, YUE R F, WANG Y. N-type B-S co-doping and S doping in diamond from first principles[J]. Carbon, 2018, 130: 458-465. [62] LI Y, JIA X P, MA H A, et al. Electrical properties of diamond single crystals co-doped with hydrogen and boron[J]. CrystEngComm, 2014, 16(32): 7547-7551. [63] LIU X B, JIA X P, ZHANG Z F, et al. Synthesis and characterization of new “BCN” diamond under high pressure and high temperature conditions[J]. Crystal Growth & Design, 2011, 11(4): 1006-1014. [64] YAN B M, JIA X P, SUN S S, et al. The growth mechanism of B/N co-doped diamonds under high pressure and high temperature[J]. International Journal of Refractory Metals and Hard Materials, 2015, 48: 56-60. [65] HU M H, BI N, LI S S, et al. Synthesis and characterization of boron and nitrogen co-doped diamond crystals under high pressure and high temperature conditions[J]. CrystEngComm, 2017, 19(31): 4571-4575. [66] MIAO X Y, CHEN L C, MA H A, et al. High-pressure and high-temperature treatment of N-rich B-doped diamonds[J]. CrystEngComm, 2019, 21(26): 3961-3965. [67] FANG C, JIA X P, CHEN N, et al. HPHT synthesis of N-H co-doped diamond single crystals[J]. Journal of Crystal Growth, 2016, 436: 34-39. [68] SUN S S, XU Z H, CUI W, et al. Synthesis of diamonds in Fe-C systems using nitrogen and hydrogen co-doped impurities under HPHT[J]. Chinese Physics B, 2017, 26(9): 098101. [69] CAI Z H, LI M, CHEN L C, et al. Study on the effect of N-H-O co-doping on diamond growth and its mechanism under HPHT by FeNi solvent[J]. CrystEngComm, 2022, 24(9): 1773-1781. [70] YAN B M, JIA X P, FANG C, et al. The effect of phosphorus and nitrogen co-doped on the synthesis of diamond at high pressure and high temperature[J]. International Journal of Refractory Metals and Hard Materials, 2016, 54: 309-314. [71] GAO N, GAO L L, YU H Y. First-principles study of N and S co-doping in diamond[J]. Diamond and Related Materials, 2023, 132: 109651. |