[1] BRANDER R W, SUTTON R P. Solution grown SiC p-n junctions[J]. Journal of Physics D: Applied Physics, 1969, 2(3): 309-318. [2] IKEDA M, HAYAKAWA T, YAMAGIWA S, et al. Fabrication of 6H-SiC light-emitting diodes by a rotation dipping technique: electroluminescence mechanisms[J]. Journal of Applied Physics, 1979, 50(12): 8215-8225. [3] ZIEGLER G, LANIG P, THEIS D, et al. Single crystal growth of SiC substrate material for blue light emitting diodes[J]. IEEE Transactions on Electron Devices, 1983, 30(4): 277-281. [4] MATSUNAMI H, NISHINO S, ONO H. IVA-8 heteroepitaxial growth of cubic silicon carbide on foreign substrates[J]. IEEE Transactions on Electron Devices, 1981, 28(10): 1235-1236. [5] JENNINGS V J, SOMMER A, CHANG H C. The epitaxial growth of silicon carbide[J]. Journal of the Electrochemical Society, 1966, 113(7): 728. [6] CAMPBELL R B, CHU T L. Epitaxial growth of silicon carbide by the thermal reduction technique[J]. Journal of the Electrochemical Society, 1966, 113(8): 825. [7] MUENCH W V, PFAFFENEDER I. Epitaxial deposition of silicon carbide from silicon tetrachloride and hexane[J]. Thin Solid Films, 1976, 31(1/2): 39-51. [8] YOSHIDA S, SAKUMA E, OKUMURA H, et al. Heteroepitaxial growth of SiC polytypes[J]. Journal of Applied Physics, 1987, 62(1): 303-305. [9] NISHINO S, POWELL J A, WILL H A. Production of large-area single-crystal wafers of cubic SiC for semiconductor devices[J]. Applied Physics Letters, 1983, 42(5): 460-462. [10] KURODA N, SHIBAHARA K, YOO W, et al. Step-controlled VPE growth of SiC single crystals at low temperatures[C]//Extended Abstracts of the 1987 Conference on Solid State Devices and Materials. August 25-27, 1987. Nippon Toshi Center, Tokyo, Japan. The Japan Society of Applied Physics, 1987: 032156. [11] KONG H, KIM H J, EDMOND J A, et al. Growth, doping, device development and characterization of CVD beta-SiC epilayers on Si(100) and alpha-SiC(0001)[J]. MRS Proceedings, 1987, 97: 233. [12] JR A B A, ROWLAND L B. Homoepitaxial vpe growth of SiC active layers[J]. Physica Status Solidi (b), 1997, 202(1):263-279. [13] RUPP R, MAKAROV N Y, BEHNER H, et al. Silicon carbide epitaxy in a vertical CVD reactor: experimental results and numerical process simulation[J]. Physica Status Solidi (b),1997,202(1):281-304. [14] KIMOTO T, ITOH A, MATSUNAMI H. Step-controlled epitaxial growth of high-quality SiC layers[J]. Physica Status Solidi (b), 1997, 202(2): 247-262. [15] THOMAS B, BARTSCH W, STEIN R A, et al. Properties and suitability of 4H-SiC epitaxial layers grown at different CVD systems for high voltage applications[J]. Materials Science Forum, 2004, 493(457-460): 181-184. [16] LA VIA F, CAMARDA M, CANINO A, et al. Fast growth rate epitaxy by chloride precursors[J]. Materials Science Forum, 2013, 740/741/742: 167-172. [17] LARKIN D J, SRIDHARA S G, DEVATY R P, et al. Hydrogen incorporation in boron-doped 6H-SiC CVD epilayers produced using site-competition epitaxy[J]. Journal of Electronic Materials, 1995, 24(4): 289-294. [18] LARKIN D J, NEUDECK P G, POWELL J A, et al. Site-competition epitaxy for superior silicon carbide electronics[J]. Applied Physics Letters, 1994, 65(13): 1659-1661. [19] LARKIN D J. SiC dopant incorporation control using site-competition CVD[J]. Physica Status Solidi (b), 1997, 202(1): 305-320. [20] WANG R J, BHAT I B, CHOW T P. Epitaxial growth of n-type SiC using phosphine and nitrogen as the precursors[J]. Journal of Applied Physics, 2002, 92(12): 7587-7592. [21] KIMOTO T, NAKAZAWA S, HASHIMOTO K, et al. Reduction of doping and trap concentrations in 4H-SiC epitaxial layers grown by chemical vapor deposition[J]. Applied Physics Letters, 2001, 79(17): 2761-2763. [22] TSUCHIDA H, KAMATA I, JIKIMOTO T, et al. Epitaxial growth of thick 4H-SiC layers in a vertical radiant-heating reactor[J]. Journal of Crystal Growth, 2002, 237/238/239: 1206-1212. [23] BURK A A, TSVETKOV D, BARNHARDT D, et al. SiC epitaxial layer growth in a 6×150 mm warm-wall planetary reactor[J]. Materials Science Forum, 2012, 717/718/719/720: 75-80. [24] KOJIMA K, SUZUKI T, KURODA S, et al. Epitaxial growth of high-quality 4H-SiC carbon-face by low-pressure hot-wall chemical vapor deposition[J]. Japanese Journal of Applied Physics, 2003, 42(Part 2, No. 6B): L637-L639. [25] THOMAS B, ZHANG J E,MOEGGENBORG K, et al. Progress of SiC epitaxy on 150 mm substrates[J]. Materials Science Forum, 2015, 821/822/823: 161-164. [26] MATTIA M, EGIDIO C, DANILO C, et al. Development of n-type epitaxial growth on 200 mm 4H-SiC wafers for the next generation of power devices[J]. Microelectronic Engineering, 2023, 274(1): 111976. [27] THOMAS B, ZHANG J E, CHUNG G Y, et al. Homoepitaxial chemical vapor deposition of up to 150 μm thick 4H-SiC epilayers in a 10×100 mm batch reactor[J]. Materials Science Forum, 2016, 858: 129-132. [28] KENNETH G I. Growth of very uniform silicon carbide epitaxial layers, US6063186A[P]. 1999-06-24. [29] AYEDH H M, HALLÉN A, SVENSSON B G. Elimination of carbon vacancies in 4H-SiC epi-layers by near-surface ion implantation: influence of the ion species[J]. Journal of Applied Physics, 2015, 118(17): 175701. [30] AYEDH H M, KVAMSDAL K E, BOBAL V, et al. Carbon vacancy control in p+-n silicon carbide diodes for high voltage bipolar applications[J]. Journal of Physics D: Applied Physics, 2021, 54(45): 455106. [31] MIYAZAWA T, TSUCHIDA H. Point defect reduction and carrier lifetime improvement of Si- and C-face 4H-SiC epilayers[J]. Journal of Applied Physics, 2013, 113(8): 083714. [32] RANA T, CHUNG G, SOUKHOJAK A, et al. Interfacial dislocation reduction by optimizing process condition in SiC epitaxy[J]. Materials Science Forum, 2022, 63(9): 99-103. [33] ZHANG X A, NAGANO M, TSUCHIDA H. Basal plane dislocations in 4H-SiC epilayers with different dopings[J]. Materials Science Forum, 2012, 725: 27-30. [34] KAMATA I, TSUCHIDA H, JIKIMOTO T, et al. Structural transformation of screw dislocations via thick 4H-SiC epitaxial growth[J]. Japanese Journal of Applied Physics, 2000, 39(12R): 6496. [35] DANIELSSON Ö, FORSBERG U, JANZÉN E. Predicted nitrogen doping concentrations in silicon carbide epitaxial layers grown by hot-wall chemical vapor deposition[J]. Journal of Crystal Growth, 2003, 250(3/4): 471-478. [36] TSVETKOV V F, ALLEN S T, KONG H S, et al. Recent progress in SiC crystal growth[C]//International Conference on Silicon Carbide and Related Materials, 1995, 142: 317. [37] LENDENMANN H, DAHLQUIST F, JOHANSSON N, et al. Long term operation of 4.5kV PiN and 2.5kV JBS diodes[J]. Materials Science Forum, 2001, 353/354/355/356: 727-730. [38] BERGMAN P, LENDENMANN H, NILSSON P Å, et al. Crystal defects as source of anomalous forward voltage increase of 4H-SiC diodes[J]. Materials Science Forum, 2001, 353/354/355/356: 299-302. [39] LENDENMANN H, BERGMAN P, DAHLQUIST F, et al. Degradation in SiC bipolar devices: sources and consequences of electrically active dislocations in SiC[J]. Materials Science Forum, 2003, 433/434/435/436: 901-906. [40] MUZYKOV P G, KENNEDY R M, ZHANG Q, et al. Physical phenomena affecting performance and reliability of 4H-SiC bipolar junction transistors[J]. Microelectronics Reliability, 2009, 49(1): 32-37. [41] SKOWRONSKI M, HA S. Degradation of hexagonal silicon-carbide-based bipolar devices[J]. Journal of Applied Physics, 2006, 99(1): 011101. [42] YANG L, ZHAO L X, WU H W, et al. Characterization and reduction of defects in 4H-SiC substrate and homo-epitaxial wafer[J]. Materials Science Forum, 2020, 1004: 387-392. [43] STAHLBUSH R E, VANMIL B L, MYERS-WARD R L, et al. Basal plane dislocation reduction in 4H-SiC epitaxy by growth interruptions[J]. Applied Physics Letters, 2009, 94(4): 041916. [44] CAPAN I, BORJANOVIC' V, PIVAC B. Dislocation-related deep levels in carbon rich p-type polycrystalline silicon[J]. Solar Energy Materials and Solar Cells, 2007, 91(10): 931-937. [45] NA M, BAHNG W, JANG H, et al. Effects of stress on the evolution of Σ-shaped dislocation arrays in a 4H-SiC epitaxial layer[J]. Journal of Applied Physics, 2021, 129(24): 245101. [46] LI Z, ZHANG X A, ZHANG Z H, et al. Microstructure of interfacial basal plane dislocations in 4H-SiC epilayers[J]. Materials Science Forum, 2019, 954: 77-81. [47] NISHIO J, KUDOU C, TAMURA K, et al. C-face epitaxial growth of 4H-SiC on quasi-150-mm diameter wafers with high throughput[J]. Materials Science Forum, 2014, 778/779/780: 109-112. [48] AOKI M, KAWANOWA H, FENG G, et al. Characterization of bar-shaped stacking faults in 4H-SiC epitaxial layers by high-resolution transmission electron microscopy[J]. Japanese Journal of Applied Physics, 2013, 52(6R): 061301. [49] CAMARDA M, CANINO A, LA MAGNA A, et al. Structural and electronic characterization of (2, 33) bar-shaped stacking fault in 4H-SiC epitaxial layers[J]. Applied Physics Letters, 2011, 98(5): 051915. [50] SUO H, YAMASHITA T, ETO K, et al. Observation of multilayer Shockley-type stacking fault formation during process of epitaxial growth on highly nitrogen-doped 4H-SiC substrate[J]. Japanese Journal of Applied Physics, 2019, 58(2): 021001. [51] ASAFUJI R, HIJIKATA Y. Generation of stacking faults in 4H-SiC epilayer induced by oxidation[J]. Materials Research Express, 2018, 5(1): 015903. [52] DONG L, SUN G S, YU J, et al. Mapping of micropipes and downfalls on 4H-SiC epilayers by Candela optical surface analyzer[C]//2012 IEEE 11th International Conference on Solid-State and Integrated Circuit Technology. October 29-November 1, 2012, Xi'an, China. IEEE, 2013: 1-3. [53] KONSTANTINOV A O, HALLIN C, PÉCZ B, et al. The mechanism for cubic SiC formation on off-oriented substrates[J]. Journal of Crystal Growth, 1997, 178(4): 495-504. [54] OKADA T, KIMOTO T, YAMAI K, et al. Crystallographic defects under device-killing surface faults in a homoepitaxially grown film of SiC[J]. Materials Science and Engineering: A, 2003, 361(1/2): 67-74. [55] BENAMARA M, ZHANG X, SKOWRONSKI M, et al. Structure of the carrot defect in 4H-SiC epitaxial layers[J]. Applied Physics Letters, 2005, 86(2): 021905. [56] OKADA T, KIMOTO T, NODA H, et al. Correspondence between surface morphological faults and crystallographic defects in 4H-SiC homoepitaxial film[J]. Japanese Journal of Applied Physics, 2002, 41: 6320-6326. [57] TSUCHIDA H, KAMATA I, NAGANO M. Investigation of defect formation in 4H-SiC epitaxial growth by X-ray topography and defect selective etching[J]. Journal of Crystal Growth, 2007, 306(2): 254-261. [58] 孙国胜, 杨 霏, 柏 松, 等. 4H-碳化硅衬底及外延层缺陷术语[S]. T/CASA 004.1-2018, 北京, 2018. SUN G S, YANF F, BO S, et al. 4H-Silicon carbide substrate and epitaxial layer defect terms[S]. T/CASA 004.1-2018, Beijing, 2018 (in Chinese). [59] POWELL J A, LARKIN D J. Process-induced morphological defects in epitaxial CVD silicon carbide[J]. Physica Status Solidi (b), 1997, 202(1): 529-548. [60] KIMOTO T, CHEN Z Y, TAMURA S, et al. Surface morphological structures of 4H-, 6H- and 15R-SiC (0001) epitaxial layers grown by chemical vapor deposition[J]. Japanese Journal of Applied Physics, 2001, 40(5R): 3315. [61] KIMOTO T, MIYAMOTO N, MATSUNAMI H. Performance limiting surface defects in SiC epitaxial p-n junction diodes[J]. IEEE Transactions on Electron Devices, 1999, 46(3): 471-477. [62] OHTANI N, USHIO S, KANEKO T, et al. Tunneling atomic force microscopy studies on surface growth pits due to dislocations in 4H-SiC epitaxial layers[J]. Journal of Electronic Materials, 2012, 41(8): 2193-2196. [63] 孙国胜, 杨 霏, 柏 松, 等. 4H-SiC衬底及外延层缺陷图谱[S]. T/CASA 004.2-2018, 北京, 2018. SUN G S, YANF F, BO S, et al. Defect map of 4H-SiC substrate and epitaxial layer[S]. T/CASA 004.2-2018, Beijing, 2018 (in Chinese). [64] KUDOU C, ASAMIZU H, TAMURA K, et al. Influence of epi-layer growth pits on SiC device characteristics[J]. Materials Science Forum, 2015, 821/822/823: 177-180. |