人工晶体学报 ›› 2024, Vol. 53 ›› Issue (2): 218-230.
付凤艳, 王晓红, 高志华, 邢广恩, 张彦, 范培
收稿日期:
2023-08-09
出版日期:
2024-02-15
发布日期:
2024-02-04
作者简介:
付凤艳(1981—),女,河北省人,博士,讲师。E-mail:1374195561@qq.com
基金资助:
FU Fengyan, WANG Xiaohong, GAO Zhihua, XING Guang'en, ZHANG Yan, FAN Pei
Received:
2023-08-09
Online:
2024-02-15
Published:
2024-02-04
摘要: 质子交换膜(PEMs)在燃料电池中起到关键作用,它分离了阴极和阳极,提供了质子传输通道,阻隔了燃料在电池中的渗透。以Nafion为代表的全氟磺酸膜具有优异的化学稳定性、优异的热稳定性和较高的质子传导率,但也存在成本较高、高温下机械性能较差和质子传导率低,以及易降解等问题。金属有机框架结构(MOFs)具有孔隙率高、比表面积大和内部孔道可调控等优点,作为PEMs的潜在材料,直接用于质子导体或用于修饰、改进现有的离子型高分子PEMs,取得了一系列重要进展。本文综述了MOFs结构质子导体常见的四种质子传导方式,总结了MOFs在不同类型离子型聚合物的复合PEMs中的相关研究,并指出了MOFs质子导体在PEMs应用中存在的问题,为其进一步开发和应用提供参考。
中图分类号:
付凤艳, 王晓红, 高志华, 邢广恩, 张彦, 范培. 金属有机框架质子导体及其质子交换膜应用研究进展[J]. 人工晶体学报, 2024, 53(2): 218-230.
FU Fengyan, WANG Xiaohong, GAO Zhihua, XING Guang'en, ZHANG Yan, FAN Pei. Research Progress on Metal Organic Frameworks Proton Conductor and Their Applications in Proton Exchange Membranes[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(2): 218-230.
[1] HICKNER M A, GHASSEMI H, KIM Y S, et al. Alternative polymer systems for proton exchange membranes (PEMs)[J]. Chemical Reviews, 2004, 104(10): 4587-4611. [2] LI Q F, HE R H, JENSEN J O, et al. Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 ℃[J]. Chemistry of Materials, 2003, 15(26): 4896-4915. [3] WANG Y, DIAZ D F R, CHEN K S, et al. Materials, technological status, and fundamentals of PEM fuel cells-a review[J]. Materials Today, 2020, 32: 178-203. [4] SUH M P, PARK H J, PRASAD T K, et al. Hydrogen storage in metal-organic frameworks[J]. Chemical Reviews, 2012, 112(2): 782-835. [5] YANG D, GATES B C. Catalysis by metal organic frameworks: perspective and suggestions for future research[J]. ACS Catalysis, 2019, 9(3): 1779-1798. [6] WANG L, ZHENG M, XIE Z G. Nanoscale metal-organic frameworks for drug delivery: a conventional platform with new promise[J]. Journal of Materials Chemistry B, 2018, 6(5): 707-717. [7] YOSHIDA Y, KITAGAWA H. Ionic conduction in metal-organic frameworks with incorporated ionic liquids[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 70-81. [8] KANDA S, YAMASHITA K, OHKAWA K. A proton conductive coordination polymer. I.[N, N′-bis(2-hydroxyethyl)dithiooxamido]copper(II)[J]. Bulletin of the Chemical Society of Japan, 1979, 52(11): 3296-3301. [9] NAGAO Y, FUJISHIMA M, IKEDA R, et al. Highly proton-conductive copper coordination polymers[J]. Synthetic Metals, 2003, 133/134: 431-432. [10] NAGAO Y, KUBO T, NAKASUJI K, et al. Preparation and proton transport property of N, N′-diethyldithiooxamidatocopper coordination polymer[J]. Synthetic Metals, 2005, 154(1/2/3): 89-92. [11] SADAKIYO M, YAMADA T, KITAGAWA H. Hydrated proton-conductive metal-organic frameworks[J]. ChemPlusChem, 2016, 81(8): 691-701. [12] YE Y X, GONG L S, XIANG S C, et al. Metal-organic frameworks as a versatile platform for proton conductors[J]. Advanced Materials, 2020, 32(21): 1907090. [13] YU J C, CUI Y J, WU C D, et al. Second-order nonlinear optical activity induced by ordered dipolar chromophores confined in the pores of an anionic metal-organic framework[J]. Angewandte Chemie International Edition, 2012, 51(42): 10542-10545. [14] SI X J, JIA J, BAO Y L, et al. Superprotonic conductivity of a 3D anionic metal-organic framework by synergistic effect of guest[Me2NH2]+ cations, water molecules and host carboxylates[J]. Journal of Solid State Chemistry, 2021, 299: 122168. [15] PANDA T, KUNDU T, BANERJEE R. Self-assembled one dimensional functionalized metal-organic nanotubes (MONTs) for proton conduction[J]. Chemical Communications, 2012, 48(44): 5464-5466. [16] PANDA T, KUNDU T, BANERJEE R. Structural isomerism leading to variable proton conductivity in indium(iii) isophthalic acid based frameworks[J]. Chemical Communications, 2013, 49(55): 6197-6199. [17] HAN Y H, YE Y X, TIAN C B, et al. High proton conductivity in an unprecedented anionic metalloring organic framework (MROF) containing novel metalloring clusters with the largest diameter[J]. Journal of Materials Chemistry A, 2016, 4(48): 18742-18746. [18] ZHAI L, YU J W, ZHANG J, et al. High quantum yield pure blue emission and fast proton conduction from an indium metal organic framework[J]. Dalton Transactions, 2019, 48(32): 12088-12095. [19] LIU R L, ZHAO L L, YU S H, et al. Enhancing proton conductivity of a 3D metal-organic framework by attaching guest NH3 molecules[J]. Inorganic Chemistry, 2018, 57(18): 11560-11568. [20] LI X M, DONG L Z, LI S L, et al. Synergistic conductivity effect in a proton sources-coupled metal-organic framework[J]. ACS Energy Letters, 2017, 2(10): 2313-2318. [21] YANG F, XU G, DOU Y B, et al. A flexible metal-organic framework with a high density of sulfonic acid sites for proton conduction[J]. Nature Energy, 2017, 2(11): 877-883. [22] PABLO S A, BIGLIONE C, SERGIO M F V, et al. High proton conductivity of a bismuth phosphonate metal-organic framework with unusual topology[J]. Chemistry of Materials, 2023, 35(11): 4329-4337. [23] VILELA S M F, SALCEDO-ABRAIRA P, GÓMEZ-PEÑA A, et al. Proton conductive Zr-phosphonate UPG-1-aminoacid insertion as proton carrier stabilizer[J]. Molecules, 2020, 25(15): 3519. [24] PABLO S A, SÉRGIO M F V, NIEVES U, et al. Ion-exchanged UPG-1 as potential electrolyte for fuel cells[J]. Inorganic Chemistry, 2021, 60(16): 11803-11812. [25] ZHANG F M, DONG L Z, QIN J S, et al. Effect of imidazole arrangements on proton-conductivity in metal-organic frameworks[J]. Journal of the American Chemical Society, 2017, 139(17): 6183-6189. [26] SARANGO-RAMÍREZ M K, LIM D W, KOLOKOLOV D I, et al. Superprotonic conductivity in metal-organic framework via solvent-free coordinative urea insertion[J]. Journal of the American Chemical Society, 2020, 142(15): 6861-6865. [27] CHEN H, HAN S Y, LIU R H, et al. High conductive, long-term durable, anhydrous proton conductive solid-state electrolyte based on a metal-organic framework impregnated with binary ionic liquids: synthesis, characteristic and effect of anion[J]. Journal of Power Sources, 2018, 376: 168-176. [28] SUN X L, DENG W H, CHEN H, et al. A metal-organic framework impregnated with a binary ionic liquid for safe proton conduction above 100 ℃[J]. Chemistry-A European Journal, 2017, 23(6): 1248-1252. [29] LI X M, WANG Y M, WU B K, et al. Efficient proton transport in stable functionalized channels of zirconium metal-organic frameworks[J]. ACS Applied Energy Materials, 2021, 4(8): 8303-8310. [30] XU Q X, ZHANG X P, ZENG S J, et al. Ionic liquid incorporated metal organic framework for high ionic conductivity over extended temperature range[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(8): 7892-7899. [31] TAYLOR J M, KOMATSU T, DEKURA S, et al. The role of a three dimensionally ordered defect sublattice on the acidity of a sulfonated metal-organic framework[J]. Journal of the American Chemical Society, 2015, 137(35): 11498-11506. [32] TAYLOR J M, DEKURA S, IKEDA R, et al. Defect control to enhance proton conductivity in a metal-organic framework[J]. Chemistry of Materials, 2015, 27(7): 2286-2289. [33] ZHENG J Y, WANG Q M, JIANG F Q, et al. Enhanced proton conductivity by incorporating sulfonic acid groups into a zirconium-based metal-organic framework via ligand exchange[J]. Journal of Solid State Chemistry, 2023, 324: 124070. [34] LIU S S, HAN Z, YANG J S, et al. Sulfonic groups lined along channels of metal-organic frameworks (MOFs) for super-proton conductor[J]. Inorganic Chemistry, 2020, 59(1): 396-402. [35] YANG F, SHI R M, HUANG H L, et al. Nanochannel engineering in metal-organic frameworks by grafting sulfonic groups for boosting proton conductivity[J]. ACS Applied Energy Materials, 2022, 5(3): 3235-3241. [36] LIU Q Q, LIU S S, LIU X F, et al. Superprotonic conductivity of UiO-66 with missing-linker defects in aqua-ammonia vapor[J]. Inorganic Chemistry, 2022, 61(8): 3406-3411. [37] BASU O, MUKHOPADHYAY S, LAHA S, et al. Defect engineering in a metal-organic framework system to achieve super-protonic conductivity[J]. Chemistry of Materials, 2022, 34 (15): 6734-6743. [38] SZUFLA M, NAVARRO J A R, GÓRA-MAREK K, et al. Effect of missing-linker defects and ion exchange on stability and proton conduction of a sulfonated layered Zr-MOF[J]. ACS Applied Materials & Interfaces, 2023, 15(23): 28184-28192. [39] 孙 炼, 王洪磊, 余金山, 等. 金属有机框架质子导体及其质子交换膜的研究进展[J]. 化学学报, 2020, 78(9): 888-900. SUN WANG H L, YU J S, et al. Recent progress on proton-conductive metal-organic frameworks and their proton exchange membranes[J]. Acta Chimica Sinica, 2020, 78(9): 888-900 (in Chinese). [40] LI W, SAMARASINGHE S A S C, BAE T H. Enhancing CO2/CH4 separation performance and mechanical strength of mixed-matrix membrane via combined use of graphene oxide and ZIF-8[J]. Journal of Industrial and Engineering Chemistry, 2018, 67: 156-163. [41] LIU Y R, CHEN Y Y, ZHUANG Q, et al. Recent advances in MOFs-based proton exchange membranes[J]. Coordination Chemistry Reviews, 2022, 471: 214740. [42] WANG R J, LIU S S, WANG L D, et al. Understanding of nanophase separation and hydrophilic morphology in nafion and SPEEK membranes: a combined experimental and theoretical studies[J]. Nanomaterials, 2019, 9(6): 869. [43] BAO Y L, ZHENG J Y, ZHENG H P, et al. Cu-MOF@PVP/PVDF hybrid composites as tunable proton-conducting materials[J]. Journal of Solid State Chemistry, 2022, 310: 123070. [44] YIN C S, HE C Q, LIU Q C, et al. Free volume, gas permeation, and proton conductivity in MIL-101-SO3H/Nafion composite membranes[J]. Physical Chemistry Chemical Physics, 2019, 21(47): 25982-25992. [45] HUANG S Z, LIU S S, ZHANG H J, et al. Dual-functional proton-conducting and pH-sensing polymer membrane benefiting from a Eu-MOF[J]. ACS Applied Materials & Interfaces, 2020, 12(25): 28720-28726. [46] FENG L, HOU H, ZHOU H. UiO-66 derivatives and their composite membranes for effective proton conduction[J]. Dalton Transactions, 2020,49(47): 17130-17139. [47] BIRADHA K, GOSWAMI A, MOI R, et al. Metal-organic frameworks as proton conductors: strategies for improved proton conductivity[J]. Dalton Transactions, 2021, 50(31): 10655-10673. [48] RAO Z A, TANG B B, WU P Y. Proton conductivity of proton exchange membrane synergistically promoted by different functionalized metal-organic frameworks[J]. ACS Applied Materials & Interfaces, 2017, 9(27): 22597-22603. [49] WANG H F, ZHAO Y J, SHAO Z C, et al. Proton conduction of nafion hybrid membranes promoted by NH3-modified Zn-MOF with host-guest collaborative hydrogen bonds for H2/O2 fuel cell applications[J]. ACS Applied Materials & Interfaces, 2021, 13(6): 7485-7497. [50] WANG H F, WEN T Y, SHAO Z C, et al. High proton conductivity in nafion/Ni-MOF composite membranes promoted by ligand exchange under ambient conditions[J]. Inorganic Chemistry, 2021, 60(14): 10492-10501. [51] DING L, ZOU H Q, LU J, et al. Enhancing proton conductivity of nafion membrane by incorporating porous Tb-metal-organic framework modified with nitro groups[J]. Inorganic Chemistry, 2022, 61(40): 16185-16196. [52] LIU X T, WANG B C, HAO B B, et al. Dual-functional coordination polymers with high proton conduction behaviour and good luminescence properties[J]. Dalton Transactions, 2021, 50(25): 8718-8726. [53] RANA MUHAMMAD N J, AMANI A O, MUHAMMAD T, et al. Recent developments in graphene and graphene oxide materials for polymer electrolyte membrane fuel cells applications[J]. Renewable and Sustainable Energy Reviews, 2022, 168: 112836. [54] 付凤艳, 张 杰, 程敬泉, 等. 氧化石墨烯在燃料电池质子交换膜中的应用[J]. 化工进展, 2019, 38(5): 2233-2241. FU F Y, ZHANG J, CHENG J Q, et al. Application of graphene oxide in proton exchange membrane for fuel cell[J]. Chemical Industry and Engineering Progress, 2019, 38(5): 2233-2241 (in Chinese). [55] CAI Y Y, WANG J J, CAI Z H, et al. Enhanced performance of sulfonated poly(ether ether ketone) hybrid membranes by introducing sulfated MOF-808/graphene oxide composites[J]. ACS Applied Energy Materials, 2021, 4(9): 9664-9672. [56] CAI Y Y, ZHANG Q G, ZHU A M, et al. Two-dimensional metal-organic framework-graphene oxide hybrid nanocomposite proton exchange membranes with enhanced proton conduction[J]. Journal of Colloid and Interface Science, 2021, 594: 593-603. [57] RAY M, SAMANTARAY P K, NEGI Y S. In situ polymerization-mediated cross-linking of the MOF using poly(1-vinylimidazole) in SPEEK fuel cells[J]. ACS Applied Polymer Materials, 2023, 5(7): 4704-4715. [58] WANG L Y, DENG N P, WANG G, et al. Constructing amino-functionalized flower-like metal-organic framework nanofibers in sulfonated poly(ether sulfone) proton exchange membrane for simultaneously enhancing interface compatibility and proton conduction[J]. ACS Applied Materials & Interfaces, 2019, 11(43): 39979-39990. [59] XING Y Y, WANG J A, ZHANG C X, et al. High proton conductivity of the UiO-66-NH2-SPES composite membrane prepared by covalent cross-linking[J]. ACS Applied Materials & Interfaces, 2023, 15(27): 33003-33012. [60] DONG X Y, WANG J H, LIU S S, et al. Synergy between isomorphous acid and basic metal-organic frameworks for anhydrous proton conduction of low-cost hybrid membranes at high temperatures[J]. ACS Applied Materials & Interfaces, 2018, 10(44): 38209-38216. [61] CUI F Y, WANG W Y, LIU C N, et al. Carbon nanocomposites self-assembly UiO-66-doped chitosan proton exchange membrane with enhanced proton conductivity[J]. International Journal of Energy Research, 2020, 44(6): 4426-4437. [62] WU G M, WANG Y L, QIAO N, et al. High proton conduction behavior of a water-stable cadmium organic framework and its polymer composite membranes[J]. Journal of the Electrochemical Society, 2021, 168(6): 064518. [63] CHEN X, ZHANG S L, XIAO S H, et al. Ultrahigh proton conductivities of postmodified Hf(IV) metal-organic frameworks and related chitosan-based composite membranes[J]. ACS Applied Materials & Interfaces, 2023, 15(29): 35128-35139. [64] MOORTHY S, SIVASUBRAMANIAN G, KANNAIYAN D, et al. Neoteric advancements in polybenzimidazole based polymer electrolytes for high-temperature proton exchange membrane fuel cells-A versatile review[J]. International Journal of Hydrogen Energy, 2023, 48(72): 28103-28118. [65] CHEN J L, WANG L, WANG L. Highly conductive polybenzimidazole membranes at low phosphoric acid uptake with excellent fuel cell performances by constructing long-range continuous proton transport channels using a metal-organic framework (UIO-66)[J]. ACS Applied Materials & Interfaces, 2020, 12(37): 41350-41358. [66] MUKHOPADHYAY S, DAS A, JANA T, et al. Fabricating a MOF material with polybenzimidazole into an efficient proton exchange membrane[J]. ACS Applied Energy Materials, 2020, 3(8): 7964-7977. [67] MUKHOPADHYAY S, DEBGUPTA J, SINGH C, et al. Designing UiO-66-based superprotonic conductor with the highest metal-organic framework based proton conductivity[J]. ACS Applied Materials & Interfaces, 2019, 11(14): 13423-13432. [68] LIU Y P, CHEN J L, FU X Z, et al. Constructing proton transport channels in low phosphoric-acid doped polybenzimidazole membrane by introducing metal-organic frameworks containing phosphoric-acid groups[J]. Journal of Power Sources, 2021, 507: 230316. [69] WANG P, WU Y N, LIN W J, et al. Constructing unique carboxylated proton transport channels via the phosphoric acid etching of a metal-organic framework in a crosslinked branched polybenzimidazole[J]. Journal of Materials Chemistry A, 2022, 10(43): 23058-23067. |
[1] | 江涛, 梁晓彤, 廖思燕, 刘小慧, 余嘉俊, 邹霖, 邱燕璇. 基于5-氨基烟酸的锰金属有机框架的合成、结构及荧光传感性质[J]. 人工晶体学报, 2024, 53(2): 307-314. |
[2] | 张文谦, 孙威, 曹铎, 牛亚杰, 吴文荣, 王东飞. 一种钡金属有机框架材料的合成及其晶体结构和发光性能的研究[J]. 人工晶体学报, 2022, 51(8): 1370-1377. |
[3] | 郝森然, 陈晓, 曾晓苑, 肖杰. 直接碳燃料电池燃料的研究进展[J]. 人工晶体学报, 2022, 51(2): 360-369. |
[4] | 朱百丽, 贺鹏珍, 王清华, 崔术新. 一种具有荧光性质的三维Zn(Ⅱ)金属-有机框架[J]. 人工晶体学报, 2021, 50(8): 1471-1477. |
[5] | 代思玉, 刘宇奇, 李杨华, 王新颖, 李玮, 张青青. 双配体配位的Ni(Ⅱ)、Cu(Ⅱ)金属配合物的结构和性能[J]. 人工晶体学报, 2021, 50(12): 2283-2292. |
[6] | 姚远;侯宏英;刘显茜;田川;孟堃;兰建;徐加雷;冯蒙蒙. 金属有机框架苯丙氨酸铜衍生的氧化铜负极的电化学储锂性能[J]. 人工晶体学报, 2020, 49(7): 1242-1245. |
[7] | 王春玲;刘肖杰. 用于高效的氧还原反应MoF衍生的Co-N-C复合材料[J]. 人工晶体学报, 2019, 48(6): 1158-1162. |
[8] | 李瑞锋;王文娟;李纯;鲁自鼎;刘诚;黄康. LaBaCo2O5+δ-Co3O4复合阴极的制备及电化学性能研究[J]. 人工晶体学报, 2019, 48(1): 70-74. |
[9] | 孙为;王雨翔;马跃;邱贝贝;徐志彦;周琼;卢贵武. SPEEK/PVDF-g-PSSA复合膜中质子扩散的MD模拟研究[J]. 人工晶体学报, 2017, 46(8): 1487-1492. |
[10] | 赵晓慧;牟雪萍;熊月龙;彭开萍. Ce0.8Sm0.2O1.9-BaCe0.8Sm0.2O2.9复合电解质的成分对其电化学性能的影响[J]. 人工晶体学报, 2017, 46(7): 1300-1306. |
[11] | 苏海莹;贾晓静;许彦彬;刘华艳;范悦;丁铁柱. SDC/YSZ双层电解质薄膜的制备与特性[J]. 人工晶体学报, 2016, 45(7): 1732-1735. |
[12] | 肖祯照;许聪颖;余守江;彭开萍. 固相反应后复合电解质BaCe0.8Y0.2O2.9-Ce0.8Gd0.2O1.9的化学稳定性研究[J]. 人工晶体学报, 2016, 45(6): 1549-1554. |
[13] | 谢志翔;陈婷;王竹梅;沈宗洋;廖润华;李月明. A位缺位对SOFC阳极材料La0.6Sr1.4MgMoO6的性能影响[J]. 人工晶体学报, 2016, 45(5): 1180-1185. |
[14] | 孙良良;刘丽丽;罗凌虹;吴也凡;石继军;程亮;徐序. Pd修饰Ni-YSZ多维阳极在直接甲烷SOFC的抗积碳研究[J]. 人工晶体学报, 2016, 45(4): 913-917. |
[15] | 罗凌虹;叶辉华;胡志敏;孙良良;石纪军;程亮;余辉. 固体氧化物燃料电池NiO@GDC复合阳极制备及性能研究[J]. 人工晶体学报, 2015, 44(8): 2118-2122. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||