[1] OU P X, ZHENG Q, JIANG W. Design and performance regulation of MOFs-derived carbon composites for electromagnetic wave absorption[J]. Journal of Ceramics, 2023, 44(04): 651-661. [2] CHANG M, JIA Z R, HE S Q, et al. Two-dimensional interface engineering of NiS/MoS2/Ti3C2Tx heterostructures for promoting electromagnetic wave absorption capability[J]. Composites Part B: Engineering, 2021, 225: 109306. [3] CHEN C J, SHAN Z, TAO S F, et al. Atomic tuning in electrically conducting bimetallic organic frameworks for controllable electromagnetic wave absorption[J]. Advanced Functional Materials, 2023, 33(45): 2305082. [4] YANG K, CUI Y H, LIU Z H, et al. Design of core-shell structure NC@MoS2 hierarchical nanotubes as high-performance electromagnetic wave absorber[J]. Chemical Engineering Journal, 2021, 426: 131308. [5] LIU Z C, PAN F, DENG B W, et al. Self-assembled MoS2/3D worm-like expanded graphite hybrids for high-efficiency microwave absorption[J]. Carbon, 2021, 174: 59-69. [6] DENG B W, XIANG Z, XIONG J, et al. Sandwich-like Fe&TiO2@C nanocomposites derived from MXene/Fe-MOFs hybrids for electromagnetic absorption[J]. Nano-Micro Letters, 2020, 12(1): 55. [7] XU Z H, TANG L, ZHANG S W, et al. 2D MoS2/CuPc heterojunction based highly sensitive photodetectors through ultrafast charge transfer[J]. Materials Today Physics, 2020, 15: 100273. [8] XIE X Q, AO Z M, SU D W, et al. MoS2/graphene composite anodes with enhanced performance for sodium-ion batteries: the role of the two-dimensional heterointerface[J]. Advanced Functional Materials, 2015, 25(9): 1393-1403. [9] ZHANG X J, LI S, WANG S W, et al. Self-supported construction of three-dimensional MoS2 hierarchical nanospheres with tunable high-performance microwave absorption in broadband[J]. The Journal of Physical Chemistry C, 2016, 120(38): 22019-22027. [10] NING M Q, JIANG P H, DING W, et al. Phase manipulating toward molybdenum disulfide for optimizing electromagnetic wave absorbing in gigahertz[J]. Advanced Functional Materials, 2021, 31(19): 2011229. [11] BAI J L, HUANG S J, YAO X M, et al. Surface engineering of nanoflower-like MoS2 decorated porous Si3N4 ceramics for electromagnetic wave absorption[J]. Journal of Materials Chemistry A, 2023, 11(12): 6274-6285. [12] WANG J Q, LIU L, JIAO S L, et al. Hierarchical carbon Fiber@MXene@MoS2 core-sheath synergistic microstructure for tunable and efficient microwave absorption[J]. Advanced Functional Materials, 2020, 30(45): 2002595. [13] DU H, ZHANG Q P, ZHAO B, et al. Novel hierarchical structure of MoS2/TiO2/Ti3C2Tx composites for dramatically enhanced electromagnetic absorbing properties[J]. Journal of Advanced Ceramics, 2021, 10(5): 1042-1051. [14] ZHANG D Q, XIONG Y F, CHENG J Y, et al. Construction of low-frequency and high-efficiency electromagnetic wave absorber enabled by texturing rod-like TiO2 on few-layer of WS2 nanosheets[J]. Applied Surface Science, 2021, 548: 149158. [15] LI Y Y, GAI L X, SONG G L, et al. Enhanced properties of CoS2/Cu2S embedded N/S co-doped mesh-like carbonaceous composites for electromagnetic wave absorption[J]. Carbon, 2022, 186: 238-252. [16] LIU X F, NIE X Y, YU R H, et al. Design of dual-frequency electromagnetic wave absorption by interface modulation strategy[J]. Chemical Engineering Journal, 2018, 334: 153-161. [17] ZENG X J, ZHAO C, JIANG X A, et al. Functional tailoring of multi-dimensional pure MXene nanostructures for significantly accelerated electromagnetic wave absorption[J]. Small, 2023, 19(41): 2303393. [18] WANG H Q, WANG J W, WANG X Z, et al. Dielectric properties and energy storage performance of PVDF-based composites with MoS2@MXene nanofiller[J]. Chemical Engineering Journal, 2022, 437: 135431. [19] ZENG X, ZHAO C, NIE T, et al. Construction of 0D/1D/2D MXene nanoribbons-NiCo@NC hierarchical network and their coupling effect on electromagnetic wave absorption[J]. Materials Today Physics, 2022, 28: 100888. [20] XIN X, SONG Y R, GUO S H, et al. In-situ growth of high-content 1T phase MoS2 confined in the CuS nanoframe for efficient photocatalytic hydrogen evolution[J]. Applied Catalysis B: Environmental, 2020, 269: 118773. [21] WANG X Y, ZHU T, CHANG S C, et al. 3D nest-like architecture of core-shell CoFe2O4@1T/2H-MoS2 composites with tunable microwave absorption performance[J]. ACS Applied Materials & Interfaces, 2020, 12(9): 11252-11264. [22] ZENG X J, ZHANG Z L, JIN C L. Construction of Ti3C2Tx nanoribbons/MoCoPx heterostructures and high-efficient electrocatalytic OER performance[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023, 47(4): 190-197. [23] XU J, LIU L N, ZHANG X C, et al. Tailoring electronic properties and polarization relaxation behavior of MoS2 monolayers for electromagnetic energy dissipation and wireless pressure micro-sensor[J]. Chemical Engineering Journal, 2021, 425: 131700. [24] PAN Z H, CAO F, HU X, et al. A facile method for synthesizing CuS decorated Ti3C2 MXene with enhanced performance for asymmetric supercapacitors[J]. Journal of Materials Chemistry A, 2019, 7(15): 8984-8992. [25] ZENG X J, JIANG X A, NING Y, et al. Construction of dual heterogeneous interface between zigzag-like Mo-MXene nanofibers and small CoNi@NC nanoparticles for electromagnetic wave absorption[J]. Journal of Advanced Ceramics, 2023, 12(8): 1562-1576. [26] ZENG X J, ZHANG H Q, YU R H, et al. A phase and interface co-engineered MoPxSy@NiFePxSy@NPS-C hierarchical heterostructure for sustainable oxygen evolution reaction[J]. Journal of Materials Chemistry A, 2023, 11(26): 14272-14283. [27] YU X P, YANG C, SONG P, et al. Self-assembly of Au/MoS2 quantum dots core-satellite hybrid as efficient electrocatalyst for hydrogen production[J]. Tungsten, 2020, 2(2): 194-202. [28] WU P K, CHEN T, LIU C Y, et al. Confinement engineering to enhance broadband microwave absorption of hierarchically magnetic carbon tubular composite[J]. Carbon, 2023, 214: 118353. [29] LIU J L, ZHANG L M, ZANG D Y, et al. A competitive reaction strategy toward binary metal sulfides for tailoring electromagnetic wave absorption[J]. Advanced Functional Materials, 2021, 31(45): 2105018. [30] ZHENG C L, NING M Q, ZOU Z, et al. Two birds with one stone: broadband electromagnetic wave absorption and anticorrosion performance in 2-18 GHz for Prussian blue analog derivatives aimed for practical applications[J]. Small, 2023, 19(32): e2208211. [31] ZHOU X F, JIA Z R, ZHANG X X, et al. Electromagnetic wave absorption performance of NiCo2X4 (X=O, S, Se, Te) spinel structures[J]. Chemical Engineering Journal, 2021, 420: 129907. [32] CHENG J, CAI L, SHI Y Y, et al. Polarization loss-enhanced honeycomb-like MoS2 nanoflowers/undaria pinnatifida-derived porous carbon composites with high-efficient electromagnetic wave absorption[J]. Chemical Engineering Journal, 2022, 431: 134284. [33] GAO X R, JIA Z R, WANG B B, et al. Synthesis of NiCo-LDH/MXene hybrids with abundant heterojunction surfaces as a lightweight electromagnetic wave absorber[J]. Chemical Engineering Journal, 2021, 419: 130019. [34] YAN J, HUANG Y, CHEN C, et al. The 3D CoNi alloy particles embedded in N-doped porous carbon foams for high-performance microwave absorbers[J]. Carbon, 2019, 152: 545-555. [35] WANG J W, WANG B B, WANG Z, et al. Synthesis of 3D flower-like ZnO/ZnCo2O4 composites with the heterogeneous interface for excellent electromagnetic wave absorption properties[J]. Journal of Colloid and Interface Science, 2021, 586: 479-490. [36] ZHOU Y, ZHOU W J, NI C H, et al. “Tree blossom” Ni/NC/C composites as high-efficiency microwave absorbents[J]. Chemical Engineering Journal, 2022, 430: 132621. [37] PENG H, HE M, ZHOU Y M, et al. Low-temperature carbonized biomimetic cellulose nanofiber/MXene composite membrane with excellent microwave absorption performance and tunable absorption bands[J]. Chemical Engineering Journal, 2022, 433: 133269. |