[1] JIANG Z, XU X H, MA Y H, et al. Filling metal-organic framework mesopores with TiO2 for CO2 photoreduction[J]. Nature, 2020, 586(7830): 549-554. [2] XU F, MENG K, CHENG B, et al. Unique S-scheme hetero junctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction[J]. Nature Communications, 2020, 11: 4613. [3] LI W, ELZATAHRY A, ALDHAYAN D, et al. Core-shell structured titanium dioxide nanomaterials for solar energy utilization[J]. Chemical Society Reviews, 2018, 47(22): 8203-8237. [4] SELCUK S, SELLONI A. Facet-dependent trapping and dynamics of excess electrons at anatase TiO2 surfaces and aqueous interfaces[J]. Nature Materials, 2016, 15(10): 1107-1112. [5] DIEBOLD U. The surface science of titanium dioxide[J]. Surface Science Reports, 2003, 48(5/6/7/8): 53-229. [6] HENDERSON M A. The interaction of water with solid surfaces: fundamental aspects revisited[J]. Surface Science Reports, 2002, 46(1): 1-308. [7] ZHANG H Z, BANFIELD J F. Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2[J]. The Journal of Physical Chemistry B, 2000, 104(15): 3481-3487. [8] KAVAN L, GRÄTZEL M, GILBERT S E, et al. Electrochemical and photoelectrochemical investigation of single-crystal anatase[J]. Journal of the American Chemical Society, 1996, 118(28): 6716-6723. [9] LAZZERI M, VITTADINI A, SELLONI A. Structure and energetics of stoichiometric TiO2 anatase surfaces[J]. Physical Review B, 2001, 63(15): 155409. [10] YANG Y Q, LIU G, IRVINE J T S, et al. Enhanced photocatalytic H2 production in core-shell engineered rutile TiO2[J]. Advanced Materials, 2016, 28(28): 5850-5856. [11] ZHAO Z, ZHANG X Y, ZHANG G Q, et al. Effect of defects on photocatalytic activity of rutile TiO2 nanorods[J]. Nano Research, 2015, 8(12): 4061-4071. [12] SCHAUB R, THOSTRUP P, LOPEZ N, et al. Oxygen vacancies as active sites for water dissociation on rutile TiO2(110)[J]. Physical Review Letters, 2001, 87(26): 266104. [13] WANG Z W, CHEN W G, TENG D, et al. Interplay between H2S and anatase TiO2(101) surface: the effect of subsurface oxygen vacancy[J]. The Journal of Physical Chemistry C, 2022, 126(8): 3939-3948. [14] 苏巧智, 韩清珍, 高锦花, 等. 过渡金属掺杂锐钛矿TiO2(101)表面的改性[J]. 物理学报, 2017, 66(6): 067101. SU Q Z, HAN Q Z, GAO J H, et al. Modification of the photocatalytic properties of anatase TiO2(101) surface by doping transition metals[J]. Acta Physica Sinica, 2017, 66(6): 067101 (in Chinese). [15] TANG X, YAO L F, YAN X P, et al. First-principles calculations on pure and Y-doped anatase TiO2[J]. Key Engineering Materials, 2013, 562/563/564/565: 1166-1170. [16] WANG Q L, LIAN G D, DICKEY E C. Grain boundary segregation in yttrium-doped polycrystalline TiO2[J]. Acta Materialia, 2004, 52(4): 809-820. [17] WANG Q, VARGHESE O, GRIMES C, et al. Grain boundary blocking and segregation effects in yttrium-doped polycrystalline titanium dioxide[J]. Solid State Ionics, 2007, 178(3/4): 187-194. [18] LI D X, LI R Q, QIN X M, et al. First-principle studies of the magnetism and optical properties of (Sc, Y)-codoped anatase TiO2 (101) surface[J]. Physics Letters A, 2019, 383(23): 2679-2684. [19] KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, Condensed Matter, 1996, 54(16): 11169-11186. [20] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. [21] ALLEGRETTI F, O'BRIEN S, POLCIK M, et al. Adsorption bond length for H2O on TiO2(110): a key parameter for theoretical understanding[J]. Physical Review Letters, 2005, 95(22): 226104. [22] KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999, 59(3): 1758-1775. [23] BLÖCHL P E. Projector augmented-wave method[J]. Physical Review B, 1994, 50(24): 17953-17979. [24] 贾 兰. TiO2表面力学性质及高活性表面面积比的应变调控研究[D]. 南京: 南京大学, 2012. JIA L. Study on mechanical properties of TiO2 surface and strain regulation of high active surface area ratio[D].Nanjing: Nanjing University, 2012 (in Chinese). [25] MO S D, CHING W Y. Electronic and optical properties of three phases of titanium dioxide: rutile, anatase, and brookite[J]. Physical Review B, 1995, 51(19): 13023-13032. [26] MONKHORST H J, PACK J D. Special points for brillouin-zone integrations[J]. Physical Review B, 1976, 13(12): 5188-5192. |