[1] LUAN F F, XIAO G X, ZHANG Y X, et al. Synthesis, fluorescence properties and F-detection performance of Eu(III) complexes based on the novel coumarin Schiff base derivatives[J]. Journal of Molecular Liquids, 2020, 320: 114439. [2] 田 娜, 刘英才, 杨远航, 等. 一例吡嗪羧酸镉配合物的合成、结构及荧光性质研究[J]. 人工晶体学报, 2023, 52(2): 322-326. TIAN N, LIU Y C, YANG Y H, et al. Synthesis, structure and fluorescence properties of a pyrazinyl carboxylate cadmium complex[J]. Journal of Synthetic Crystals, 2023, 52(2): 322-326 (in Chinese). [3] 曾振芳, 袁 芳, 黄秋萍, 等. 对氯苯甲酸构筑的铜(Ⅱ)配合物的合成、HSA结合及细胞毒性[J]. 人工晶体学报, 2022, 51(1): 126-131. ZENG Z F, YUAN F, HUANG Q P, et al. Synthesis, HSA binding, and cytotoxic activity of copper(Ⅱ) complex constructed by P-chlorobenzoic acid[J]. Journal of Synthetic Crystals, 2022, 51(1): 126-131 (in Chinese). [4] 王静怡, 张 众, 王梓兰, 等. 吡啶鎓盐配体构筑的多钼酸基配合物的合成、结构及光催化性能[J]. 人工晶体学报, 2022, 51(7): 1227-1232+1240. WANG J Y, ZHANG Z, WANG Z L, et al. Synthesis, structure and photocatalytic properties of polymolybdate-based complex constructed by pyridinium ligand[J]. Journal of Synthetic Crystals, 2022, 51(7): 1227-1232+1240 (in Chinese). [5] ALTHAGAFI I, EL-SAYED R. Synthesis, surface, and antimicrobial activity of hydrophobically thiadiazole, pyridazine, and pyrimidine systems based on surface active agents[J]. Journal of Heterocyclic Chemistry, 2018, 55(3): 660-669. [6] BISIRIYU I O, MEIJBOOM R. Adsorption of Cu(II) ions from aqueous solution using pyridine-2, 6-dicarboxylic acid crosslinked chitosan as a green biopolymer adsorbent[J]. International Journal of Biological Macromolecules, 2020, 165: 2484-2493. [7] LI P P, ZHANG H L, XIA M Z, et al. The synergistic effect and microscopic mechanism of co-adsorption of three emerging contaminants and copper ion on gemini surfactant modified montmorillonite[J]. Ecotoxicology and Environmental Safety, 2019, 184: 109610. [8] YU Y, GUO P, ZHONG J S, et al. Merging photochemistry with electrochemistry in organic synthesis[J]. Organic Chemistry Frontiers, 2020, 7(1): 131-135. [9] ZHONG J S, YU Y, ZHANG D L, et al. Merging cobalt catalysis and electrochemistry in organic synthesis[J]. Chinese Chemical Letters, 2021, 32(3): 963-972. [10] YANG J. Transition metal catalyzed meta-C-H functionalization of aromatic compounds[J]. Organic & Biomolecular Chemistry, 2015, 13(7): 1930-1941. [11] YU Y, ZHENG P F, WU Y H, et al. Electrochemical cobalt-catalyzed C-H or N-H oxidation: a facile route to synthesis of substituted oxindoles[J]. Organic & Biomolecular Chemistry, 2018, 16(46): 8917-8921. [12] SINGH R M, CHANDRA A, SHARMA N, et al. Ligand promoted and controlled palladium-catalyzed intramolecular Heck reaction of homoallyl alcohols: a facile synthesis of cyclopentaannulated quinolines[J]. Tetrahedron, 2012, 68(45): 9206-9210. [13] 王 敏, 宋吉磊, 潘 鹤, 等. 无溶剂条件下对甲苯磺酸铝高效催化合成4, 6-二芳基-3, 4-二氢嘧啶-2(1H)-酮[J]. 化学通报, 2015, 78(10): 949-952. WANG M, SONG J L, PAN H, et al. Efficient synthesis of 4, 6-diaryl-3, 4-dihydropyrimidin-2(1H)-ones catalyzed by aluminum p-toluenesulfonate under solvent-free conditions[J]. Chemistry, 2015, 78(10): 949-952 (in Chinese). [14] DANAC R, LEONTIE L, CARLESCU A, et al. Electric conduction mechanism of some heterocyclic compounds, 4, 4'-bipyridine and indolizine derivatives in thin films[J]. Thin Solid Films, 2016, 612: 358-368. [15] 王 敏, 张皜昊, 张 顺, 等. 两种苯磺酸镉(Ⅱ)配合物的结构及催化性能研究[J]. 化学研究与应用, 2020, 32(2): 252-257. WANG M, ZHANG H H, ZHANG S, et al. Study on structure and catalytic activity of two cadmium (Ⅱ) benzenesulfonates complexes[J]. Chemical Research and Application, 2020, 32(2): 252-257 (in Chinese). [16] 宋志国, 蒋晓宇, 张皜昊, 等. 对甲基苯磺酸镍的合成及催化性能研究[J]. 西南大学学报(自然科学版), 2021, 43(5): 104-109. SONG Z G, JIANG X Y, ZHANG H H, et al. Studies on the synthesis and catalytic property of nickel p-toluenesulfonate[J]. Journal of Southwest University (Natural Science Edition), 2021, 43(5): 104-109 (in Chinese). [17] 许良焕. 咪唑类配体在构建金属有机超分子中的作用[J]. 科学技术创新, 2021(21): 70-72. XU L H. The role of imidazole ligands in the construction of organometallic supramolecules[J]. Scientific and Technological Innovation, 2021(21): 70-72 (in Chinese). [18] ANANIKOV V P. Nickel: the “spirited horse” of transition metal catalysis[J]. ACS Catalysis, 2015, 5(3): 1964-1971. [19] 边延江, 秦 英, 肖立伟, 等. Knoevenagel缩合反应研究的新进展[J]. 有机化学, 2006, 26(9): 1165-1172. BIAN Y J, QIN Y, XIAO L W, et al. New advances of Knoevenagel condensation reactions[J]. Chinese Journal of Organic Chemistry, 2006, 26(9): 1165-1172 (in Chinese). [20] YANG Y, WANG D, JIANG P F, et al. Structure-induced Lewis-base Ga4B2O9 and its superior performance in Knoevenagel condensation reaction[J]. Molecular Catalysis, 2020, 490: 110914. [21] LIU F X, KUMAR S, LI S S, et al. Bifunctional design of stable metal-organic framework bearing triazole-carboxylate mixed ligand: highly efficient heterogeneous catalyst for Knoevenagel condensation reaction under mild conditions[J]. Catalysis Communications, 2020, 142: 106032. [22] DOLOMANOV O V, BOURHIS L J, GILDEA R J, et al. OLEX2: a complete structure solution, refinement and analysis program[J]. Journal of Applied Crystallography, 2009, 42(2): 339-341. [23] SING K S W, WILLIAMS R T. Physisorption hysteresis loops and the characterization of nanoporous materials[J]. Adsorption Science & Technology, 2004, 22(10): 773-782. [24] 李毅群, 叶海鸿. 阴离子交换树脂支载氟阴离子试剂催化Knoevenagel反应[J]. 有机化学, 2002, 22(9): 678-680. LI Y Q, YE H H. Anion exchange resin supported fluoride ion as a catalyst for the Knoevenagel condensation[J]. Chinese Journal of Organic Chemistry, 2002, 22(9): 678-680 (in Chinese). [25] WANG X S, ZENG Z S, LI Y L, et al. Simple procedure for the synthesis of arylmethylenemalononitrile without catalyst[J]. Synthetic Communications, 2005, 35(14): 1915-1920. |