人工晶体学报 ›› 2024, Vol. 53 ›› Issue (3): 355-371.
• “铌酸锂集成光子学”专栏 • 下一篇
刘宏德1, 王维维2, 张中正1, 郑大怀1, 刘士国1, 孔勇发1, 许京军1
收稿日期:
2024-02-15
发布日期:
2024-04-02
通信作者:
孔勇发,博士,教授。E-mail:kongyf@nankai.edu.cn
作者简介:
刘宏德(1978—),男,天津市人,博士,副教授。E-mail:liuhd97@nankai.edu.cn
基金资助:
LIU Hongde1, WANG Weiwei2, ZHANG Zhongzheng1, ZHENG Dahuai1, LIU Shiguo1, KONG Yongfa1, XU Jingjun1
Received:
2024-02-15
Published:
2024-04-02
摘要: 铌酸锂是集电光、声光、压电和非线性等性能于一体的人工晶体,在光子学及光电子学等领域具有广泛的应用前景,被誉为“光学硅”或“光子学硅”。近年来随着基于薄膜铌酸锂的集成光子学的迅猛发展,铌酸锂晶体受到更加广泛的关注。然而铌酸锂是一种典型的非化学计量比晶体,其含有大量的本征缺陷,严重影响了晶体性能;同时,铌酸锂晶格对众多杂质离子都有良好的固溶性,而且晶体的性质随着杂质离子的种类和浓度不同产生显著变化。如同单晶硅等半导体材料的缺陷工程,缺陷已经并且必将继续对晶体的性能及铌酸锂集成光子学产生重要影响。本文对铌酸锂晶体的缺陷结构做了一个简要的回顾,尤其是近期涉及薄膜铌酸锂晶体的相关内容,涵盖了本征缺陷结构、非本征缺陷结构、缺陷结构的表征、缺陷结构的理论计算、缺陷结构与晶体性能的构效关系等方面,以期对当前的铌酸锂集成光子学研究贡献微薄之力。
中图分类号:
刘宏德, 王维维, 张中正, 郑大怀, 刘士国, 孔勇发, 许京军. 铌酸锂晶体的缺陷结构[J]. 人工晶体学报, 2024, 53(3): 355-371.
LIU Hongde, WANG Weiwei, ZHANG Zhongzheng, ZHENG Dahuai, LIU Shiguo, KONG Yongfa, XU Jingjun. Defect Structure of Lithium Niobate Crystals[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(3): 355-371.
[1] 汪卫华. 非晶态物质的本质和特性[J]. 物理学进展, 2013, 33(5): 177-351. WANG W H. The nature and properties of amorphous matter[J]. Progress in Physics, 2013, 33(5): 177-351 (in Chinese). [2] OLAKANMI E O, COCHRANE R F, DALGARNO K W. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: processing, microstructure, and properties[J]. Progress in Materials Science, 2015, 74: 401-477. [3] DAWLEY N M, MARKSZ E J, HAGERSTROM A M, et al. Targeted chemical pressure yields tuneable millimetre-wave dielectric[J]. Nature Materials, 2020, 19: 176-181. [4] SCHAEDEL L, TRICLIN S, CHRÉTIEN D, et al. Lattice defects induce microtubule self-renewal[J]. Nature Physics, 2019, 15: 830-838. [5] SAKAI T K, BELYAKOV A, KAIBYSHEV R, et al. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions[J]. Progress in Materials Science, 2014, 60: 130-207. [6] CUI Y, DUAN X F, HU J T, et al. Doping and electrical transport in silicon nanowires[J]. The Journal of Physical Chemistry B, 2000, 104(22): 5213-5216. [7] CHEN D, KIM M, STEFANI B V, et al. Evidence of an identical firing-activated carrier-induced defect in monocrystalline and multicrystalline silicon[J]. Solar Energy Materials and Solar Cells, 2017, 172: 293-300. [8] SAIDAMINOV M I, KIM J, JAIN A, et al. Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air[J]. Nature Energy, 2018, 3: 648-654. [9] LIU Z, QIU W D, PENG X M, et al. Perovskite light-emitting diodes with EQE exceeding 28% through a synergetic dual-additive strategy for defect passivation and nanostructure regulation[J]. Advanced Materials, 2021, 33(43): e2103268. [10] KONG Y F, BO F, WANG W W, et al. Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices[J]. Advanced Materials, 2020, 32(3): e1806452. [11] 郑大怀, 吴 婧, 商继芳, 等. 电光调Q晶体研究进展[J]. 中国科学: 技术科学, 2017, 47(11): 1139-1148. ZHENG D H, WU J, SHANG J F, et al. Progress on electro-optic crystals for Q-switches[J]. Scientia Sinica (Technologica), 2017, 47(11): 1139-1148 (in Chinese). [12] 高博锋, 任梦昕, 郑大怀, 等. 铌酸锂的耄耋之路:历史与若干进展[J]. 人工晶体学报, 2021, 50(7): 1183-1199. GAO B F, REN M X, ZHENG D H, et al. Long-lived lithium niobate: history and progress[J]. Journal of Synthetic Crystals, 2021, 50(7): 1183-1199 (in Chinese). [13] VOLK T, WÖHLECKE M. Lithium niobate: defects, photorefraction and ferroelectric switching[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. [14] GUARINO A, POBERAJ G, REZZONICO D, et al. Electro-optically tunable microring resonators in lithium niobate[J]. Nature Photonics, 2007, 1: 407-410. [15] KÖSTERS M, STURMAN B, WERHEIT P, et al. Optical cleaning of congruent lithium niobate crystals[J]. Nature Photonics, 2009, 3: 510-513. [16] LEVY M, OSGOOD R M, LIU R, et al. Fabrication of single-crystal lithium niobate films by crystal ion slicing[J]. Applied Physics Letters, 1998, 73(16): 2293. [17] RABIEI P, GUNTER P. Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding[J]. Applied Physics Letters, 2004, 85(20): 4603. [18] ZHANG M, WANG C, CHENG R, et al. Monolithic ultra-high-Q lithium niobate microring resonator[J]. Optica, 2017, 4(12): 1536. [19] WANG C, ZHANG M, CHEN X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages[J]. Nature, 2018, 562: 101-104. [20] WU R B, WANG M, XU J, et al. Long low-loss-litium niobate on insulator waveguides with sub-nanometer surface roughness[J]. Nanomaterials, 2018, 8(11): 910. [21] DESIATOV B, SHAMS-ANSARI A, ZHANG M, et al. Ultra-low-loss integrated visible photonics using thin-film lithium niobate[J]. Optica, 2019, 6(3): 380. [22] ZHU D, SHAO L B, YU M J, et al. Integrated photonics on thin-film lithium niobate[EB/OL]. 2021: arXiv: 2102.11956. http://arxiv.org/abs/2102.11956 [23] BYER R L, YOUNG J F, FEIGELSON R S. Growth of high-quality LiNbO3 crystals from the congruent melt[J]. Journal of Applied Physics, 1970, 41(6): 2320-2325. [24] O'BRYAN H M, GALLAGHER P K, BRANDLE C D. Congruent composition and Li-rich phase boundary of LiNbO3[J]. Journal of the American Ceramic Society, 1985, 68(9): 493-496. [25] GRABMAIER B C, WERSING W, KOESTLER W. Properties of undoped and MgO-doped LiNbO3; correlation to the defect structure[J]. Journal of Crystal Growth, 1991, 110(3): 339-347. [26] ABDI F, AILLERIE M, BOURSON P, et al. Electro-optic properties in pure LiNbO3 crystals from the congruent to the stoichiometric composition[J]. Journal of Applied Physics, 1998, 84(4): 2251-2254. [27] KONDO Y, FUKUDA T, YAMASHITA Y, et al. An increase of more than 30% in the electrooptic coefficients of Fe-doped and Ce-doped stoichiometric LiNbO3 crystals[J]. Japanese Journal of Applied Physics, 2000, 39(3S): 1477. [28] NAKAMURA M, HIGUCHI S, TAKEKAWA S, et al. Optical damage resistance and refractive indices in near-stoichiometric MgO-doped LiNbO3[J]. Japanese Journal of Applied Physics, 2002, 41(2): 49-51. [29] KONG Y F, LIU S G, ZHAO Y J, et al. Highly optical damage resistant crystal: zirconium-oxide-doped lithium niobate[J]. Applied Physics Letters, 2007, 91(8): 081908. [30] PEITHMANN K, WIEBROCK A, BUSE K. Photorefractive properties of highly-doped lithium niobate crystals in the visible and near-infrared[J]. Applied Physics B, 1999, 68(5): 777-784. [31] TIAN T, KONG Y F, LIU S G, et al. Photorefraction of molybdenum-doped lithium niobate crystals[J]. Optics Letters, 2012, 37(13): 2679-2681. [32] DE MICHELI M, BOTINEAU J, NEVEU S, et al. Independent control of index and profiles in proton-exchanged lithium niobate guides[J]. Optics Letters, 1983, 8(2): 114-115. [33] ZHANG D L, ZHANG Q, QIU C X, et al. Diffusion control of an ion by another in LiNbO3 and LiTaO3 crystals[J]. Scientific Reports, 2015, 5: 10018. [34] LALLIER E. Rare-earth-doped glass and LiNbO3 waveguide lasers and optical amplifiers[J]. Applied Optics, 1992, 31(25): 5276-5282. [35] 孔勇发, 许京军, 张光寅, 等. 多功能光电材料: 铌酸锂晶体[M]. 北京: 科学出版社, 2005. KONG Y F, XU J J, ZHANG G Y, et al. Multifunctional optoelectronic material: lithium niobate crystal[M]. Beijing: Science Press, 2005 (in Chinese). [36] FAY H, ALFORD W J, DESS H M. Dependence of second-harmonic phase-matching temperature in LiNbO3 crystals on melt composition[J]. Applied Physics Letters, 1968, 12(3): 89-92. [37] LERNER P, LEGRAS C, DUMAS J P. Stoechiométrie des monocristaux de métaniobate de lithium[J]. Journal of Crystal Growth, 1968, 3/4: 231-235. [38] PETERSON G E, CARNEVALE A. 93 Nb NMR linewidths in nonstoichiometric lithium niobate[J]. The Journal of Chemical Physics, 1972, 56(10): 4848-4851. [39] ABRAHAMS S C, MARSH P. Defect structure dependence on composition in lithium niobate[J]. Acta Crystallographica Section B Structural Science, 1986, 42(1): 61-68. [40] SAFARYAN F P, FEIGELSON R S, PETROSYAN A M. An approach to the defect structure analysis of lithium niobate single crystals[J]. Journal of Applied Physics, 1999, 85(12): 8079-8082. [41] TAHIRI M, MASAIF N, JENNANE A. Defect structure analysis of lithium niobate single crystals and lithium tantalate ceramics with the next-nearest-neighbor interactions[J]. Indian Journal of Physics, 2012, 86(7): 595-600. [42] CHEN K F, LI Y L, PENG C, et al. Microstructure and defect characteristics of lithium niobate with different Li concentrations[J]. Inorganic Chemistry Frontiers, 2021, 8(17): 4006-4013. [43] SMYTH D M. Defects and transport in LiNbO3[J]. Ferroelectrics, 1983, 50(1): 93-102. [44] SCHMIDT F, KOZUB A L, BIKTAGIROV T, et al. Free and defect-bound (bi)polarons in LiNbO3: atomic structure and spectroscopic signatures fromab initiocalculations[J]. Physical Review Research, 2020, 2(4): 043002. [45] SCHIRMER O F, VON DER LINDE D. Two-photon- and X-ray-induced Nb4+ and O- small polarons in LiNbO3[J]. Applied Physics Letters, 1978, 33(1): 35-38. [46] BRÜNING H, DIECKMANN V, SCHOKE B, et al. Small-polaron based holograms in LiNbO3 in the visible spectrum[J]. Optics Express, 2012, 20(12): 13326. [47] SCHOKE B, IMLAU M, BRUNING H, et al. Transient light-induced absorption in periodically poled lithium niobate: small polaron hopping in the presence of a spatially modulated defect concentration[J]. Physical Review B, 2010, 81(13): 132301. [48] REBOUTA L, DA SILVA M F, SOARES J C, et al. Lattice site of iron in LiNbO3 (Fe3+) by the PIXE/channelling technique[J]. Europhysics Letters (EPL), 1991, 14(6): 557-561. [49] KONG Y F, LIU S G, XU J J. Recent advances in the photorefraction of doped lithium niobate crystals[J]. Materials, 2012, 5(10): 1954-1971. [50] WANG S L, SHAN Y D, WANG W W, et al. Lone-pair electron effect induced a rapid photorefractive response in site-controlled LiNbO3∶Bi, M (M = Zn, In, Zr) crystals[J]. Applied Physics Letters, 2021, 118(19): 191902. [51] SMITH R G, FRASER D B, DENTON R T, et al. Correlation of reduction in optically induced refractive-index inhomogeneity with OH content in LiTaO3 and LiNbO3[J]. Journal of Applied Physics, 1968, 39(10): 4600-4602. [52] HERRINGTON J R, DISCHLER B, RÄUBER A, et al. An optical study of the stretching absorption band near 3 microns from OH- defects in LiNbO3[J]. Solid State Communications, 1973, 12(5): 351-354. [53] KOVÁCS L, SZALAY V, CAPELLETTI R. Stoichiometry dependence of the OH- absorption band in LiNbO3 crystals[J]. Solid State Communications, 1984, 52(12): 1029-1031. [54] KOVÁCS L, WOHLECKE M, JOVANOVIĆ A, et al. Infrared absorption study of the OH vibrational band in LiNbO3 crystals[J]. Journal of Physics and Chemistry of Solids, 1991, 52(6): 797-803. [55] KONG Y F, ZHANG W L, CHEN X J, et al. Absorption spectra of pure lithium niobate crystals[J]. Journal of Physics: Condensed Matter, 1999, 11(9): 2139-2143. [56] KONG Y F, XU J J, ZHANG W L, et al. Proton site occupation in congruent lithium niobate crystal determined by nuclear magnetic resonance[J]. Physics Letters A, 1998, 250(1/2/3): 211-213. [57] WANG W W, ZHENG D H, HU M Y, et al. Effect of defects on spontaneous polarization in pure and doped LiNbO3: first-principles calculations[J]. Materials, 2018, 12(1): 100. [58] LENGYEL K, TIMÓN V, HERNÓNDEZ-LAGUNA A, et al. Structure of OH- defects in LiNbO3[J]. IOP Conference Series: Materials Science and Engineering, 2010, 15: 012015. [59] KOVÁCS L, LENGYEL K, SZALAY V. Combination transitions due to stretching and librations of OH- ions in LiNbO3[J]. Optics Letters, 2011, 36(18): 3714-3716. [60] KÖHLER T, ZSCHORNAK M, RÖDER C, et al. Chemical environment and occupation sites of hydrogen in LiMO3[J]. Journal of Materials Chemistry C, 2023, 11(2): 520-538. [61] DRAVECZ G, KOVÁCS L. Determination of the crystal composition from the OH- vibrational spectrum in lithium niobate[J]. Applied Physics B, 2007, 88(2): 305-307. [62] KOVÁCS L, SZALLER Z, LENGYEL K, et al. Hydroxyl ions in stoichiometric LiNbO3 crystals doped with optical damage resistant ions[J]. Optical Materials, 2014, 37: 55-58. [63] VOLK T, WÖHLECKE M, RUBININA N. Optical damage resistance in lithium niobate[M]//Photorefractive Materials and Their Applications 2. New York, NY: Springer New York, 2007: 165-203. [64] SCHAUFELE R F, WEBER M J. Raman scattering by lithium niobate[J]. Physical Review, 1966, 152(2): 705-708. [65] YANG X C, LAN G X, LI B, et al. Raman spectra and directional dispersion in LiNbO3 and LiTaO3[J]. Physica Status Solidi B Basic Research, 1987, 142(1): 287-300. [66] MALOVICHKO G I, GRACHEV V G, KOKANYAN E P, et al. Characterization of stoichiometric LiNbO3 grown from melts containing K2O[J]. Applied Physics A, 1993, 56(2): 103-108. [67] SCHLARB U, KLAUER S, WESSELMANN M, et al. Determination of the Li/Nb ratio in lithium niobate by means of birefringence and Raman measurements[J]. Applied Physics A, 1993, 56(4): 311-315. [68] RIDAH A, BOURSON P, FONTANA M D, et al. The composition dependence of the Raman spectrum and new assignment of the phonons in LiNbO3[J]. Journal of Physics: Condensed Matter, 1997, 9(44): 9687-9693. [69] KONG Y F, XU J J, CHEN X J, et al. Ilmenite-like stacking defect in nonstoichiometric lithium niobate crystals investigated by Raman scattering spectra[J]. Journal of Applied Physics, 2000, 87(9): 4410-4414. [70] BARAN E J, BOTTO I L, MUTO F, et al. Vibrational spectra of the ilmenite modifications of LiNbO3 and NaNbO3[J]. Journal of Materials Science Letters, 1986, 5(6): 671-672. [71] SIDOROV N V, YANICHEV A A, CHUFYREV P G, et al. Raman spectra of photorefractive lithium niobate single crystals[J]. Journal of Applied Spectroscopy, 2010, 77(1): 110-114. [72] FONTANA M D, BOURSON P. Microstructure and defects probed by Raman spectroscopy in lithium niobate crystals and devices[J]. Applied Physics Reviews, 2015, 2(4): 040602. [73] SIDOROV N, PALATNIKOV M, KADETOVA A. Raman scattering in non-stoichiometric lithium niobate crystals with a low photorefractive effect[J]. Crystals, 2019, 9(10): 535. [74] XUE D F, HE X K. Dopant occupancy and structural stability of doped lithium niobate crystals[J]. Physical Review B, 2006, 73(6): 064113. [75] HE Y L, XUE D F. Bond-energy study of photorefractive properties of doped lithium niobate crystals[J]. The Journal of Physical Chemistry C, 2007, 111(35): 13238-13243. [76] LI L L, LI Y L, ZHAO X. Hybrid density functional theory insight into the stability and microscopic properties of Bi-doped LiNbO3: lone electron pair effect[J]. Physical Review B, 2017, 96(11): 115118. [77] WANG W W, ZHONG Y, ZHENG D H, et al. P-Type conductivity mechanism and defect structure of nitrogen-doped LiNbO3 from first-principles calculations[J]. Physical Chemistry Chemical Physics, 2020, 22(1): 20-27. [78] FENG D, MING N B, HONG J F, et al. Enhancement of second-harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains[J]. Applied Physics Letters, 1980, 37(7): 607-609. [79] ZHANG Z Y, ZHU Y Y, ZHU S N, et al. Domain inversion by Li2O out-diffusion or proton exchange followed by heat treatment in LiTaO3 and LiNbO3[J]. Physica Status Solidi (a), 1996, 153(1): 275-279. [80] THIELE F, VOM BRUCH F, QUIRING V, et al. Cryogenic electro-optic polarisation conversion in titanium in-diffused lithium niobate waveguides[J]. Optics Express, 2020, 28(20): 28961-28968. [81] RAMBU A P, TIRON V, ONICIUC E, et al. Spontaneous polarization reversal induced by proton exchange in Z-cut lithium niobate α-phase channel waveguides[J]. Materials, 2021, 14(23): 7127. [82] KOKHANCHIK L S, EMELIN E V, SIROTKIN V V. Large regular arrays with submicron domains written by low-voltage e-beam on -Z cut of lithium niobate[J]. Optical Materials, 2022, 128: 112405. [83] KOKHANCHIK L S, EMELIN E V, SIROTKIN V V, et al. Deepening of domains at e-beam writing on the -Z surface of lithium niobate[J]. Journal of Physics D: Applied Physics, 2022, 55(19): 195302. [84] ALIKIN Y M, TURYGIN A P, ALIKIN D O, et al. Interaction of wedge-like domains created by local polarization reversal on nonpolar cut of lithium niobate[J]. Ferroelectrics, 2023, 604(1): 25-31. [85] KIPENKO I A, AKHMATKHANOV A R, CHUVAKOVA M A, et al. Domain wall motion and Barkhausen pulses in lithium niobate with tailored regular 2D domain structure[J]. Ferroelectrics, 2023, 604(1): 40-46. [86] GUO J X, CHEN W W, CHEN H S, et al. Recent progress in optical control of ferroelectric polarization[J]. Advanced Optical Materials, 2021, 9(23): 2002146. [87] WANG X L, CAO Q, WANG R N, et al. Domain growth driven by a femtosecond laser in lithium niobate crystal[J]. Optics Letters, 2023, 48(3): 566-569. [88] VALDIVIA C E, SONES C L, MAILIS S, et al. Ultrashort-pulse optically-assisted domain engineering in lithium niobate[J]. Ferroelectrics, 2006, 340(1): 75-82. [89] WEBJORN J, LAURELL F, ARVIDSSON G. Fabrication of periodically domain-inverted channel waveguides in lithium niobate for second harmonic generation[J]. Journal of Lightwave Technology, 1989, 7(10): 1597-1600. [90] YAMADA M, NADA N, SAITOH M, et al. First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation[J]. Applied Physics Letters, 1993, 62(5): 435-436. [91] 张志勇, 朱永元, 祝世宁, 等. 一种制备LiNbO3周期性畴反转的新方法[J]. 人工晶体学报, 1995, 24(1): 1-4. ZHANG Z Y, ZHU Y Y, ZHU S N, et al. A new method for preparing periodic domain inversion of LiNbO3[J]. Journal of Synthetic Crystals, 1995, 24(1): 1-4 (in Chinese). [92] CHEN Y L, LOU C B, XU J J, et al. Domain switching characteristics of the near stoichiometric LiNbO3 doped with MgO[J]. Journal of Applied Physics, 2003, 94(5): 3350-3352. [93] ZENG H, KONG Y F, LIU H D, et al. Light-induced superlow electric field for domain reversal in near-stoichiometric magnesium-doped lithium niobate[J]. Journal of Applied Physics, 2010, 107(6): 063514. [94] FUJIMURA M, SOHMURA T, SUHARA T. Fabrication of domain-inverted gratings in MgO∶LiNbO3 by applying voltage under ultraviolet irradiation through photomask at room temperature[J]. Electronics Letters, 2003, 39(9): 719. [95] WENGLER M C, FASSBENDER B, SOERGEL E, et al. Impact of ultraviolet light on coercive field, poling dynamics and poling quality of various lithium niobate crystals from different sources[J]. Journal of Applied Physics, 2004, 96(5): 2816-2820. [96] WENGLER M C, HEINEMEYER U, SOERGEL E, et al. Ultraviolet light-assisted domain inversion in magnesium-doped lithium niobate crystals[J]. Journal of Applied Physics, 2005, 98(6): 064104. [97] WANG W J, KONG Y F, LIU H D, et al. Light-induced domain reversal in doped lithium niobate crystals[J]. Journal of Applied Physics, 2009, 105(4): 043105. [98] ZHU H S, CHEN X F, CHEN H Y, et al. Formation of domain reversal by direct irradiation with femtosecond laser in lithium niobate[J]. Chinese Optics Letters, 2009, 7(2): 169-172. [99] XU X Y, WANG T X, CHEN P C, et al. Femtosecond laser writing of lithium niobate ferroelectric nanodomains[J]. Nature, 2022, 609: 496-501. [100] ASHKIN A, BOYD G D, DZIEDZIC J M, et al. Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3[J]. Applied Physics Letters, 1966, 9(1): 72-74. [101] ZHONG G, JIAN J, WU Z. Measurement of optically induced refractive-index change of lithium niobate doped with different concentration of MgO[J]. Proceedings of the 11th International Quantum Electronics Conference, 1980. [102] VOLK T R, PRYALKIN V I, RUBININA N M. Optical-damage-resistant LiNbO3∶Zn crystal[J]. Optics Letters, 1990, 15(18): 996-998. [103] YAMAMOTO J K, KITAMURA K, IYI N, et al. Increased optical damage resistance in Sc2O3-doped LiNbO3[J]. Applied Physics Letters, 1992, 61(18): 2156-2158. [104] KONG Y F, WEN J K, WANG H F. New doped lithium niobate crystal with high resistance to photorefraction—LiNbO3∶In[J]. Applied Physics Letters, 1995, 66(3): 280-281. [105] LI S Q, LIU S G, KONG Y F, et al. The optical damage resistance and absorption spectra of LiNbO3∶Hf crystals[J]. Journal of Physics Condensed Matter, 2006, 18(13): 3527-3534. [106] WANG L Z, LIU S G, KONG Y F, et al. Increased optical-damage resistance in tin-doped lithium niobate[J]. Optics Letters, 2010, 35(6): 883-885. [107] LIU F C, KONG Y F, LI W, et al. High resistance against ultraviolet photorefraction in zirconium-doped lithium niobate crystals[J]. Optics Letters, 2010, 35(1): 10-12. [108] IYI N, KITAMURA K, YAJIMA Y, et al. Defect structure model of MgO-doped LiNbO3[J]. Journal of Solid State Chemistry, 1995, 118(1): 148-152. [109] LIU J J, ZHANG W L, ZHANG G Y. Defect chemistry analysis of the defect structure in Mg-doped LiNbO3 crystals[J]. Physica Status Solidi (a), 1996, 156(2): 285-291. [110] AILLERIE M, BOURSON P, MOSTEFA M, et al. Photorefractive damage in congruent LiNbO3. part II. magnesium doped lithium niobate crystals[J]. Journal of Physics: Conference Series, 2013, 416: 012002. [111] LI Y L, LI L L, CHENG X F, et al. Microscopic properties of Mg in Li and Nb sites of LiNbO3 by first-principle hybrid functional: formation and related optical properties[J]. Journal of Physical Chemistry C, 2017, 121(16): 8968-8975. [112] ZHENG D H, KONG Y F, LIU S G, et al. The simultaneous enhancement of photorefraction and optical damage resistance in MgO and Bi2O3 Co-doped LiNbO3 crystals[J]. Scientific Reports, 2016, 6: 20308. [113] JIANG H W, LUO R, LIANG H X, et al. Fast response of photorefraction in lithium niobate microresonators[J]. Optics Letters, 2017, 42(17): 3267-3270. [114] LU J J, SURYA J B, LIU X W, et al. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250, 000%/W[J]. Optica, 2019, 6(12): 1455. [115] HU H, GUI L, RICKEN R, et al. Towards nonlinear photonic wires in lithium niobate[C]//SPIE OPTO. Proc SPIE 7604, Integrated Optics: Devices, Materials, and Technologies XIV, San Francisco, California, USA. 2010, 7604: 183-194. [116] WU R B, ZHANG J H, YAO N, et al. Lithium niobate micro-disk resonators of quality factors above 107[J]. Optics Letters, 2018, 43(17): 4116-4119. [117] ZHANG M, BUSCAINO B, WANG C, et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator[J]. Nature, 2019, 568: 373-377. [118] WANG S H, YANG L K, CHENG R S, et al. Incorporation of erbium ions into thin-film lithium niobate integrated photonics[J]. Applied Physics Letters, 2020, 116(15): 151103. [119] WANG Z, FANG Z W, LIU Z X, et al. On-chip tunable microdisk laser fabricated on Er3+-doped lithium niobate on insulator[J]. Optics Letters, 2021, 46(2): 380-383. [120] LIU Y A, YAN X S, WU J W, et al. On-chip erbium-doped lithium niobate microcavity laser[J]. Science China Physics, Mechanics & Astronomy, 2020, 64(3): 234262. [121] LUO Q, HAO Z Z, YANG C, et al. Microdisk lasers on an erbium-doped lithium-niobite chip[J]. Science China Physics, Mechanics & Astronomy, 2020, 64(3): 234263. [122] XIE Z D, ZHU S N. LiNbO3 crystals: from bulk to film[J]. Advanced Photonics, 2022, 4(3): 030502. [123] LUO Q, BO F, KONG Y F, et al. Advances in lithium niobate thin-film lasers and amplifiers: a review[J]. Advanced Photonics, 2023, 5(3): 034002. |
[1] | 张煜晨, 李三兵, 许京军, 张国权. 铌酸锂导电畴壁及其应用[J]. 人工晶体学报, 2024, 53(3): 395-409. |
[2] | 谢汉荣, 杨铁锋, 韦玉明, 关贺元, 卢惠辉. 薄膜铌酸锂光电探测器近期研究进展[J]. 人工晶体学报, 2024, 53(3): 410-425. |
[3] | 叶志霖, 李世凤, 崔国新, 尹志军, 王学斌, 赵刚, 胡小鹏, 祝世宁. 晶圆级薄膜铌酸锂波导制备工艺与性能表征[J]. 人工晶体学报, 2024, 53(3): 426-433. |
[4] | 孙德辉, 韩文斌, 李陈哲, 彭立果, 刘宏. 8英寸铌酸锂晶体生长研究[J]. 人工晶体学报, 2024, 53(3): 434-440. |
[5] | 何雨轩, 吴江威, 陈玉萍, 陈险峰. 适温离子交换掺铒铌酸锂薄膜的制备研究[J]. 人工晶体学报, 2024, 53(3): 441-448. |
[6] | 刘齐鲁, 郑名扬, 高洋, 张龙喜, 宋于坤, 王孚雷, 刘宏, 王东周, 桑元华. 极化电极均匀化设计调控铌酸锂周期极化占空比[J]. 人工晶体学报, 2024, 53(3): 449-457. |
[7] | 段雨濛, 贾曰辰, 吕金蔓. 飞秒激光直写铌酸锂晶体半包层光波导[J]. 人工晶体学报, 2024, 53(3): 458-464. |
[8] | 陈力, 周旭东, 袁明瑞, 肖恢芙, 田永辉. 基于亚波长光栅辅助定向耦合器的集成铌酸锂偏振分束器[J]. 人工晶体学报, 2024, 53(3): 465-471. |
[9] | 师丽红, 高作轩, 阎文博. 铌酸锂基表面活性剂辅助的水合液滴光伏输运研究[J]. 人工晶体学报, 2024, 53(3): 472-479. |
[10] | 林锦添, 高仁宏, 管江林, 黎春桃, 姚妮, 程亚. 低损耗薄膜铌酸锂光集成器件的研究进展[J]. 人工晶体学报, 2024, 53(3): 372-394. |
[11] | 师丽红, 申绪男, 阎文博. 铪铁双掺铌酸锂晶体的光折变参量研究[J]. 人工晶体学报, 2023, 52(3): 436-441. |
[12] | 孙军. 晶体人生丨祝世宁:从天然结构到人工微结构[J]. 人工晶体学报, 2022, 51(9-10): 1515-1518. |
[13] | 陈海伟, 胡小鹏, 祝世宁. 光学超晶格:从体块到薄膜[J]. 人工晶体学报, 2022, 51(9-10): 1527-1534. |
[14] | 郑大怀, 张宇琦, 王烁琳, 刘宏德, 刘士国, 孔勇发, 薄方, 许京军. 铌酸锂晶体的光折变效应[J]. 人工晶体学报, 2022, 51(9-10): 1626-1642. |
[15] | 吴婧, 李清连, 张中正, 杨金凤, 郝永鑫, 李佳欣, 刘士国, 张玲, 孙军. 名义纯及掺杂铌酸锂晶体内偏置场的实验研究[J]. 人工晶体学报, 2022, 51(4): 571-578. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||