欢迎访问《人工晶体学报》官方网站,今天是 分享到:

人工晶体学报 ›› 2024, Vol. 53 ›› Issue (3): 372-394.

• “铌酸锂集成光子学”专栏 • 上一篇    下一篇

低损耗薄膜铌酸锂光集成器件的研究进展

林锦添1, 高仁宏1,2, 管江林2,3, 黎春桃2,3, 姚妮4, 程亚1,2,3   

  1. 1.中国科学院上海光学精密机械研究所强场激光物理国家重点实验室,上海 201800;
    2.华东师范大学物理与电子科学学院,上海 200241;
    3.华东师范大学精密光谱科学与技术国家重点实验室,上海 200062;
    4.之江实验室智能感知研究院,杭州 311100
  • 收稿日期:2024-01-15 出版日期:2024-03-15 发布日期:2024-04-02
  • 通信作者: 程 亚,博士,研究员。E-mail:ya.cheng@siom.ac.cn
  • 作者简介:林锦添(1984—),男,广东省人,博士,研究员。E-mail:jintianlin@siom.ac.cn
  • 基金资助:
    国家重点研发计划(2019YFA0705000);国家自然科学基金(62122079,12192251,62235019,12334014,12134001,12104159,11933005)

Advances in Low-Loss Thin-Film Lithium Niobate Photonic Integrated Devices

LIN Jintian1, GAO Renhong1,2, GUAN Jianglin2,3, LI Chuntao2,3, YAO Ni4, CHENG Ya1,2,3   

  1. 1. State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
    2. School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China;
    3. State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China;
    4. Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou 311100, China
  • Received:2024-01-15 Online:2024-03-15 Published:2024-04-02

摘要: 近年来得益于薄膜铌酸锂晶圆离子切片技术和低损耗微纳刻蚀工艺的飞速发展,薄膜铌酸锂光集成结构提供了光场紧束缚、快速电光调谐、高效频率转换和声光转换的空前能力,各种高性能的薄膜铌酸锂光集成器件不断涌现,且朝着大规模光集成芯片的方向迅猛发展,为高速信息处理、精密测量、量子信息、人工智能等重要应用提供了全新的发展动力。本文主要围绕铌酸锂晶体发展历史、薄膜铌酸锂离子切片技术发展历程、极低损耗微纳刻蚀技术演化进程,以及高性能的薄膜铌酸锂光集成器件进展进行总结,并展望了未来的发展趋势。

关键词: 薄膜铌酸锂, 微纳加工, 光集成器件, 非线性光学, 电光调制器, 光频梳

Abstract: Recently, due to the rapid development of ion-slicing technique and low-loss nanostructuring technology for thin-film lithium niobate (TFLN), photonic integrated microstructures have been demonstrated on the TFLN platform with high-performances, allowing tight optical field confinement, ultralow propagation loss, fast electro-optic tunability, highly efficienct optical frequency conversion, and strong acousto-optic modulation. This technological advance in turn results in a variety of innovative photonic integrated devices of unprecedented optical qualities, such as meter-scale length electro-optically switchable optical true delay lines, ultrahigh-speed electro-optic modulators, efficienct frequency convertors, on-chip frequency combs, miniaturized microwave sources, bright quantum light sources, high-power waveguide amplifiers, narrow-linewidth microlasers, and compact ultrafast light sources. Up to now, the TFLN photonics is making a great advance in large-scale photonic integrated circuits, and opening an avenue for the further development for fast information processing, precision metrology, integrated quantum information processing and artificial intelligence, enabled by the advances in low-loss wafer-scale nanofabrication technology and the outstanding properties of TFLN. This review begins with the history of bulk lithium niobate optics, and then we survey the development history of ion-sliced TFLN wafer and nanofabrication technologies for TFLN photonic structures. The following sections present various TFLN photonic integrated devices categorized into nonlinear photonics, frequency comb generation, electro-optical modulators, wavelength/mode division multiplexers and coherent light sources. Finally, some conclusions and future perspectives are provided.

Key words: thin-film lithium niobate, nanofabrication, photonic integrated device, nonlinear photonics, electro-optical modulator, frequency comb generation

中图分类号: