人工晶体学报 ›› 2024, Vol. 53 ›› Issue (3): 372-394.
林锦添1, 高仁宏1,2, 管江林2,3, 黎春桃2,3, 姚妮4, 程亚1,2,3
收稿日期:
2024-01-15
出版日期:
2024-03-15
发布日期:
2024-04-02
通信作者:
程 亚,博士,研究员。E-mail:ya.cheng@siom.ac.cn
作者简介:
林锦添(1984—),男,广东省人,博士,研究员。E-mail:jintianlin@siom.ac.cn
基金资助:
LIN Jintian1, GAO Renhong1,2, GUAN Jianglin2,3, LI Chuntao2,3, YAO Ni4, CHENG Ya1,2,3
Received:
2024-01-15
Online:
2024-03-15
Published:
2024-04-02
摘要: 近年来得益于薄膜铌酸锂晶圆离子切片技术和低损耗微纳刻蚀工艺的飞速发展,薄膜铌酸锂光集成结构提供了光场紧束缚、快速电光调谐、高效频率转换和声光转换的空前能力,各种高性能的薄膜铌酸锂光集成器件不断涌现,且朝着大规模光集成芯片的方向迅猛发展,为高速信息处理、精密测量、量子信息、人工智能等重要应用提供了全新的发展动力。本文主要围绕铌酸锂晶体发展历史、薄膜铌酸锂离子切片技术发展历程、极低损耗微纳刻蚀技术演化进程,以及高性能的薄膜铌酸锂光集成器件进展进行总结,并展望了未来的发展趋势。
中图分类号:
林锦添, 高仁宏, 管江林, 黎春桃, 姚妮, 程亚. 低损耗薄膜铌酸锂光集成器件的研究进展[J]. 人工晶体学报, 2024, 53(3): 372-394.
LIN Jintian, GAO Renhong, GUAN Jianglin, LI Chuntao, YAO Ni, CHENG Ya. Advances in Low-Loss Thin-Film Lithium Niobate Photonic Integrated Devices[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(3): 372-394.
[1] LIN J T, BO F, CHENG Y, et al. Advances in on-chip photonic devices based on lithium niobate on insulator[J]. Photonics Research, 2020, 8(12): 1910. [2] KOMLJENOVIC T, HUANG D N, PINTUS P, et al. Photonic integrated circuits using heterogeneous integration on silicon[J]. Proceedings of the IEEE, 2018, 106(12): 2246-2257. [3] COLDREN L A, CORZINE S W, MAŠANOVIĆ M L. Diode lasers and photonic integrated circuits[M]. 2nd. Hoboken, New Jersey: John Wiley & Sons, 2012. [4] 程 亚. 薄膜铌酸锂光电器件与超大规模光子集成[J]. 中国激光, 2024, 51(1): 0119001. CHENG Y. Thin film lithium niobate electro-optic devices and ultralarge-scale photonic integration[J]. Chinese Journal of Lasers, 2024, 51(1): 0119001 (in Chinese). [5] JIA Y C, WANG L, CHEN F. Ion-cut lithium niobate on insulator technology: recent advances and perspectives[J]. Applied Physics Reviews, 2021, 8(1): 011307. [6] WANG C, BUREK M J, LIN Z, et al. Integrated high quality factor lithium niobate microdisk resonators[J]. Optics Express, 2014, 22(25): 30924-30933. [7] WU R B, ZHANG J H, YAO N, et al. Lithium niobate micro-disk resonators of quality factors above 107[J]. Optics Letters, 2018, 43(17): 4116-4119. [8] WANG M, WU R B, LIN J T, et al. Chemo-mechanical Polish lithography: a pathway to low loss large-scale photonic integration on lithium niobate on insulator[J]. Quantum Engineering, 2019, 1(1): e9. [9] WANG C, ZHANG M, CHEN X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages[J]. Nature, 2018, 562(7725): 101-104. [10] HE M B, XU M Y, REN Y X, et al. High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit/s and beyond[J]. Nature Photonics, 2019, 13: 359-364. [11] LIN J T, YAO N, HAO Z Z, et al. Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator[J]. Physical Review Letters, 2019, 122(17): 173903. [12] LU J J, LI M, ZOU C L, et al. Toward 1% single-photon anharmonicity with periodically poled lithium niobate microring resonators[J]. Optica, 2020, 7(12): 1654. [13] CHEN J Y, MA Z H, SUA Y M, et al. Ultra-efficient frequency conversion in quasi-phase-matched lithium niobate microrings[J]. Optica, 2019, 6(9): 1244. [14] YUAN S, WU Y K, DANG Z Z, et al. Strongly enhanced second harmonic generation in a thin film lithium niobate heterostructure cavity[J]. Physical Review Letters, 2021, 127(15): 153901. [15] HOU J K, LIN J T, ZHU J F, et al. Self-induced transparency in a perfectly absorbing chiral second-harmonic generator[J]. PhotoniX, 2022, 3(1): 22. [16] 刘时杰, 郑远林, 陈险峰. 铌酸锂薄膜上的非线性频率转换[J]. 光学学报, 2021, 41(8): 0823013. LIU S J, ZHENG Y L, CHEN X F. Nonlinear frequency conversion in lithium niobate thin films[J]. Acta Optica Sinica, 2021, 41(8): 0823013 (in Chinese). [17] ZHOU J X, GAO R H, LIN J T, et al. Electro-optically switchable optical true delay lines of meter-scale lengths fabricated on lithium niobate on insulator using photolithography assisted chemo-mechanical etching[J]. Chinese Physics Letters, 2020, 37(8): 084201. [18] SONG L B, CHEN J M, WU R B, et al. Electro-optically tunable optical delay line with a continuous tuning range of 220 fs in thin-film lithium niobate[J]. Optics Letters, 2023, 48(9): 2261-2264. [19] QI Z T, LI Y H, HUANG Y W, et al. A 15-user quantum secure direct communication network[J]. Light: Science & Applications, 2021, 10: 183. [20] RAO A, NADER N, STEVENS M J, et al. Photon pair generation on a silicon chip using nanophotonic periodically-poled lithium niobate waveguides[C]//2018 Conference on Lasers and Electro-Optics (CLEO). San Jose, CA, USA. IEEE, 2018: 1-2. [21] ZHAO J, MA C X, RÜSING M, et al. High quality entangled photon pair generation in periodically poled thin-film lithium niobate waveguides[J]. Physical Review Letters, 2020, 124(16): 163603. [22] XUE G T, NIU Y F, LIU X Y, et al. Ultrabright multiplexed energy-time-entangled photon generation from lithium niobate on insulator chip[J]. Physical Review Applied, 2021, 15(6): 064059. [23] XU B Y, CHEN L K, LIN J T, et al. Spectrally multiplexed and bright entangled photon pairs in a lithium niobate microresonator[J]. Science China Physics, Mechanics & Astronomy, 2022, 65(9): 294262. [24] ZHU Z Z, WANG Z, FANG Z W, et al. Low loss 1×16/40 flat type beam splitters on thin film lithium niobate using photolithography assisted chemo-mechanical etching[J]. Laser & Photonics Reviews, 2023: 2301052. [25] CHEN L, HAN X, ZHOU X D, et al. Demonstration of a high-performance 3 dB power splitter in silicon nitride loaded lithium niobate on insulator[J]. Laser & Photonics Reviews, 2023, 17(11): 2300377. [26] WANG Z, FANG Z W, LIU Z X, et al. On-chip arrayed waveguide grating fabricated on thin-film lithium niobate[J]. Advanced Photonics Research, 2024, 5(2): 2300228. [27] WU Y N, SUN X R, XUE X T, et al. Compact adiabatic polarization splitter-rotator on thin-film lithium niobate[J]. Journal of Lightwave Technology, 2023, PP(99): 1-7. [28] HAN X, CHEN L, JIANG Y H, et al. Integrated subwavelength gratings on a lithium niobate on insulator platform for mode and polarization manipulation[J]. Laser & Photonics Reviews, 2022, 16(7): 2200130. [29] WANG C, ZHANG M, YU M J, et al. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation[J]. Nature Communications, 2019, 10: 978. [30] HE Y, YANG Q F, LING J W, et al. Self-starting bi-chromatic LiNbO3 soliton microcomb[J]. Optica, 2019, 6(9): 1138. [31] LU J J, PUZYREV D N, PANKRATOV V V, et al. Two-colour dissipative solitons and breathers in microresonator second-harmonic generation[J]. Nature Communications, 2023, 14: 2798. [32] YANG C, YANG S, DU F, et al. 1550-nm band soliton microcombs in ytterbium-doped lithium-niobate microrings[J]. Laser & Photonics Reviews, 2023, 17(9): 2200510. [33] WAN S, WANG P Y, MA R, et al. Photorefraction-assisted self-emergence of dissipative Kerr solitons[J]. Laser & Photonics Reviews, 2024, 18(2): 2300627. [34] CAI L T, MAHMOUD A, KHAN M, et al. Acousto-optical modulation of thin film lithium niobate waveguide devices[J]. Photonics Research, 2019, 7(9): 1003. [35] SHAO L B, YU M J, MAITY S, et al. Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators[J]. Optica, 2019, 6(12): 1498. [36] WAN L, YANG Z Q, ZHOU W F, et al. Highly efficient acousto-optic modulation using nonsuspended thin-film lithium niobate-chalcogenide hybrid waveguides[J]. Light: Science & Applications, 2022, 11: 145. [37] YU M J, CHENG R, REIMER C, et al. Integrated electro-optic isolator on thin-film lithium niobate[J]. Nature Photonics, 2023, 17: 666-671. [38] GAO L, LIANG Y T, SONG L B, et al. Thin-film lithium niobate electro-optic isolator fabricated by photolithography assisted chemo-mechanical etching[J]. Optics Letters, 2024, 49(3): 614. [39] LUO Q, BO F, KONG Y F, et al. Advances in lithium niobate thin-film lasers and amplifiers: a review[J]. Advanced Photonics, 2023, 5(3): 034002. [40] LIN J T, FARAJOLLAHI S, FANG Z W, et al. Electro-optic tuning of a single-frequency ultranarrow linewidth microdisk laser[J]. Advanced Photonics, 2022, 4(3): 036001. [41] WANG M, FANG Z W, LIN J T, et al. Integrated active lithium niobate photonic devices[J]. Japanese Journal of Applied Physics, 2023, 62: SC0801. [42] LIU X M, YAN X S, LIU Y A, et al. Tunable single-mode laser on thin film lithium niobate[J]. Optics Letters, 2021, 46(21): 5505-5508. [43] LI T Y, WU K, CAI M L, et al. A single-frequency single-resonator laser on erbium-doped lithium niobate on insulator[J]. APL Photonics, 2021, 6(10): 101301. [44] YU S P, FANG Z W, WANG Z, et al. On-chip single-mode thin-film lithium niobate Fabry-Perot resonator laser based on Sagnac loop reflectors[J]. Optics Letters, 2023, 48(10): 2660. [45] GAO R H, GUAN J L, YAO N, et al. On-chip ultra-narrow-linewidth single-mode microlaser on lithium niobate on insulator[J]. Optics Letters, 2021, 46(13): 3131-3134. [46] ZHANG R, YANG C, HAO Z Z, et al. Integrated lithium niobate single-mode lasers by the Vernier effect[J]. Science China Physics, Mechanics & Astronomy, 2021, 64(9): 294216. [47] GAO R H, FU B T, YAO N, et al. Electro-optically tunable low phase-noise microwave synthesizer in an active lithium niobate microdisk[J]. Laser & Photonics Reviews, 2023, 17(5): 2200903. [48] ZHANG Z H, LI S M, GAO R H, et al. Erbium-ytterbium codoped thin-film lithium niobate integrated waveguide amplifier with a 27 dB internal net gain[J]. Optics Letters, 2023, 48(16): 4344-4347. [49] CAI M L, WU K, XIANG J M, et al. Erbium-doped lithium niobate thin film waveguide amplifier with 16 dB internal net gain[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28(3): 8200608. [50] DE BEECK C O, MAYOR F M, CUYVERS S, et al. III/V-on-lithium niobate amplifiers and lasers[J]. Optica, 2021, 8(10): 1288-1289. [51] CHEN Z X, XU Q, ZHANG K, et al. Efficient erbium-doped thin-film lithium niobate waveguide amplifiers[J]. Optics Letters, 2021, 46(5): 1161-1164. [52] LUO Q, YANG C, HAO Z Z, et al. On-chip erbium-doped lithium niobate waveguide amplifiers[J]. Chinese Optics Letters, 2021, 19(6): 060008. [53] ZHOU J X, LIANG Y T, LIU Z X, et al. On-chip integrated waveguide amplifiers on erbium-doped thin-film lithium niobate on insulator[J]. Laser & Photonics Reviews, 2021, 15(8): 2100030. [54] LIANG Y T, ZHOU J X, LIU Z X, et al. A high-gain cladded waveguide amplifier on erbium doped thin-film lithium niobate fabricated using photolithography assisted chemo-mechanical etching[J]. Nanophotonics, 2022, 11(5): 737. [55] BAO R, SONG L B, CHEN J M, et al. On-chip coherent beam combination of waveguide amplifiers on Er3+-doped thin film lithium niobate[J]. Optics Letters, 2023, 48(24): 6348-6351. [56] YAN X S, LIU Y A, WU J W, et al. Integrated spiral waveguide amplifiers on erbium-doped thin-film lithium niobate[EB/OL]. 2021: arXiv: 2105.00214. http://arxiv.org/abs/2105.00214.pdf [57] SHAMS-ANSARI A, RENAUD D, CHENG R, et al. Electrically pumped laser transmitter integrated on thin-film lithium niobate[J]. Optica, 2022, 9(4): 408-411. [58] ZHANG X, LIU X Y, MA R, et al. Heterogeneously integrated III-V-on-lithium niobate broadband light sources and photodetectors[J]. Optics Letters, 2022, 47(17): 4564-4567. [59] SNIGIREV V, RIEDHAUSER A, LIHACHEV G, et al. Ultrafast tunable lasers using lithium niobate integrated photonics[J]. Nature, 2023, 615: 411-417. [60] LI M X, CHANG L, WU L, et al. Integrated Pockels laser[J]. Nature Communications, 2022, 13: 5344. [61] YU M J, BARTON III D, CHENG R, et al. Integrated femtosecond pulse generator on thin-film lithium niobate[J]. Nature, 2022, 612: 252-258. [62] GUO Q, GUTIERREZ B, SEKINE R, et al. Ultrafast mode-locked laser in nanophotonic lithium niobate[J]. Science, 382: 708-713. [63] DESIATOV B, LONVCAR M. Silicon photodetector for integrated lithium niobate photonics[J]. Applied Physics Letters, 2019, 115(12): 121108. [64] GUAN H Y, HONG J Y, WANG X L, et al. Broadband, high-sensitivity graphene photodetector based on ferroelectric polarization of lithium niobate[J]. Advanced Optical Materials, 2021, 9(16): 2100245. [65] SUN X L, SHENG Y, GAO X, et al. Self-powered lithium niobate thin-film photodetectors[J]. Small, 2022, 18(35): e2203532. [66] PKER J P, BARTNICK M, MEYER-SCOTT E, et al. Towards integrated superconducting detectors on lithium niobate waveguides[C]//SPIE Nanoscience + Engineering. Proc SPIE 10358, Quantum Photonic Devices, San Diego, California, USA. 2017, 10358: 21-27. [67] ZHU S, ZHANG Y W, FENG J X, et al. Integrated lithium niobate photonic millimeter-wave radar[EB/OL]. 2023: arXiv: 2311.09857. http://arxiv.org/abs/2311.09857.pdf [68] 高博锋, 任梦昕, 郑大怀, 等. 铌酸锂的耄耋之路[J]. 人工晶体学报, 2021, 50(7): 1183-1199. GAO B F, REN M X, ZHENG D H, et al. Long-lived lithium niobate: history and progress[J]. Journal of Synthetic Crystals, 2021, 50(7): 1183-1199 (in Chinese). [69] 孙 军, 郝永鑫, 张 玲, 等. 铌酸锂晶体及其应用概述[J]. 人工晶体学报, 2020, 49(6): 947-964. SUN J, HAO Y X, ZHANG L, et al. Brief review of lithium niobate crystal and its applications[J]. Journal of Synthetic Crystals, 2020, 49(6): 947-964 (in Chinese). [70] ZACHARIASEN W H. Untersuchungen über die Kristallstrukturen von Sesquioxiden und Verbindungen ABO3[J]. Geologiska Föreningen i Stockholm Förhandlingar, 1929, 51(1): 123. [71] SRINIVASAN N R. Studies on niobium and tantalum[J]. Proceedings of the Indian Academy of Sciences - Section A, 1952, 36(3): 185. [72] SÁNCHEZ-DENA O, FIERRO-RUIZ C D, VILLALOBOS-MENDOZA S D, et al. Lithium niobate single crystals and powders reviewed—part I[J]. Crystals, 2020, 10(11): 973. [73] MATTHIAS B T, REMEIKA J P. Ferroelectricity in the ilmenite structure[J]. Physical Review, 1949, 76(12): 1886-1887. [74] BALLMAN A A. Growth of piezoelectric and ferroelectric materials by the CzochraIski technique[J]. Journal of the American Ceramic Society, 1965, 48(2): 112-113. [75] FEDULOV S, SHAPIRO I, LADYZHENSKI P. Application of Czochralski method for growth of LiNbO3, LiTaO3, and NaNbO3 single crystals[J]. Kristallografiya, 1965, 10(2): 268-269. [76] WARNER J, ROBERTSON D S, HULME K F. The temperature dependence of optical birefringence in lithium niobate[J]. Physics Letters, 1966, 20(2): 163-164. [77] PETERSON G E, BALLMAN A A, LENZO P V, et al. Electro-optic properties of LiNbO3[J]. Applied Physics Letters, 1964, 5(3): 62-64. [78] LENZO P V, SPENCER E G, NASSAU K. Electro-optic coefficients in single-domain ferroelectric lithium niobate[J]. JOSA, 1966, 56(5): 633-635. [79] TURNER E H. High-frequency electro-optic coefficients of lithium niobate[J]. Applied Physics Letters, 1966, 8(11): 303-304. [80] KAMINOW I P, SHARPLESS W M. Performance of LiTaO3 and LiNbO3 light modulators at 4 GHz[J]. Applied Optics, 1967, 6(2): 351-352. [81] MILLER R C, BOYD G D, SAVAGE A. Nonlinear optical interactions in LiNbO3 without double refraction[J]. Applied Physics Letters, 1965, 6(4): 77-79. [82] GIORDMAINE J A, MILLER R C. Tunable coherent parametric oscillation in LiNbO3 at optical frequencies[J]. Physical Review Letters, 1965, 14(24): 973-976. [83] GIORDMAINE J A, MILLER R C. Optical parametric oscillation in the visible spectrum[J]. Applied Physics Letters, 1966, 9(8): 298-300. [84] WARNER A. New piezoelectric materials[C]//19th Annual Symposium on Frequency Control. Atlantic City, NJ, USA. IEEE, 1965: 5-21. [85] NASSAU K, LEVINSTEIN H J, LOIACONO G M. The domain structure and etching of ferroelectric lithium niobate[J]. Applied Physics Letters, 1965, 6(11): 228-229. [86] NASSAU K, LEVINSTEIN H J. Ferroelectric behavior of lithium niobate[J]. Applied Physics Letters, 1965, 7(3): 69-70. [87] KAMINOW I P, CARRUTHERS J R. Optical waveguiding layers in LiNbO3 and LiTaO3[J]. Applied Physics Letters, 1973, 22(7): 326-328. [88] OHMACHI Y, NODA J. Electro-optic light modulator with branched ridge waveguide[J]. Applied Physics Letters, 1975, 27(10): 544-546. [89] JACKEL J L, RICE C E, VESELKA J J. Proton exchange for high-index waveguides in LiNbO3[J]. Applied Physics Letters, 1982, 41(7): 607-608. [90] FENG D, MING N B, HONG J F, et al. Enhancement of second-harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains[J]. Applied Physics Letters, 1980, 37(7): 607. [91] ARMSTRONG J A, BLOEMBERGEN N, DUCUING J, et al. Interactions between light waves in a nonlinear dielectric[J]. Physical Review, 1962, 127(6): 1918-1939. [92] ZHONG G, JIN J, WU Z. Measurements of optically induced refractive-index damage of lithium niobate doped with different concentrations of MgO[J]. Journal of the Optical Society of America, 1980, 70(6): 631. [93] KONG Y F, LIU S G, XU J J. Recent advances in the photorefraction of doped lithium niobate crystals[J]. Materials, 2012, 5(10): 1954-1971. [94] ZHANG G Q, SONG D H, LIU Z B, et al. 1. Recent progresses on weak-light nonlinear optics[M]//Advances in Nonlinear Optics: DE GRUYTER, 2015: 1-104. [95] 刘思敏, 郭 儒, 许京军. 光折变非线性光学及其应用[M]. 北京: 科学出版社, 2004. LIU S M, GUO R, XU J J. Photorefractive nonlinear optics and its applications[M]. Beijing: Science Press, 2004 (in Chinese). [96] ZHANG G Q, BO F, DONG R, et al. Phase-coupling-induced ultraslow light propagation in solids at room temperature[J]. Physical Review Letters, 2004, 93(13): 133903. [97] CHEN Z G, MARTIN H, EUGENIEVA E D, et al. Anisotropic enhancement of discrete diffraction and formation of two-dimensional discrete-soliton trains[J]. Physical Review Letters, 2004, 92(14): 143902. [98] QIAO H J, XU J J, ZHANG G Q, et al. Ultraviolet photorefractivity features in doped lithium niobate crystals[J]. Physical Review B, 2004, 70(9): 094101. [99] KONG Y F, BO F, WANG W W, et al. Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices[J]. Advanced Materials, 2020, 32(3): e1806452. [100] WANG S L, SHAN Y D, ZHENG D H, et al. The real-time dynamic holographic display of LN∶Bi, Mg crystals and defect-related electron mobility[J]. Opto-Electronic Advances, 2022, 5(12): 210135. [101] JIN H, LIU F M, XU P, et al. On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits[J]. Physical Review Letters, 2014, 113(10): 103601. [102] LEVY M, OSGOOD R M, LIU R, et al. Fabrication of single-crystal lithium niobate films by crystal ion slicing[J]. Applied Physics Letters, 1998, 73(16): 2293. [103] RABIEI P, GUNTER P. Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding[J]. Applied Physics Letters, 2004, 85(20): 4603. [104] RABIEI P, GUNTER P. Sub-micron thin films of lithium niobate single crystals prepared by crystal ion slicing and wafer bonding[C]//Conference on Lasers and Electro-Optics. Baltimore, MD, USA. IEEE, 2005: 235-237. [105] SZAFRANIAK I, RADU I, SCHOLZ R, et al. Single-crystalline ferroelectric thin films by ion implantation and direct wafer bonding[J]. Integrated Ferroelectrics, 2003, 55(1): 983-990. [106] SOLAL M, PASTUREAUD T, BALLANDRAS S, et al. Oriented lithium niobate layers transferred on 4"[100]silicon wafer for RF SAW devices[C]//2002 IEEE Ultrasonics Symposium, 2002. Proceedings. Munich, Germany. IEEE, 2002: 131-134. [107] RABIEI P, GUNTER P. Smart guide: lithium niobate large index contrast waveguides fabricated by crystal ion slicing and wafer bonding[C]//Integrated Optoelectronic Devices 2005. Proc SPIE 5728, Integrated Optics: Devices, Materials, and Technologies IX, San Jose, California, USA. 2005, 5728: 291-298. [108] PIJOLAT M, REINHARDT A, DEFAY E, et al. Large Qxf product for HBAR using Smart CutTM transfer of LiNbO3 thin layers onto LiNbO3 substrate[C]//2008 IEEE Ultrasonics Symposium. Beijing, China. IEEE, 2008: 201-204. [109] HU H, RICKEN R, SOHLER W. High refractive index contrast ridge waveguides in LiNbO3 thin films[C]//CLEO/Europe-EQEC 2009-European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference. Munich, Germany. IEEE, 2009: 1. [110] HU H, RICKEN R, SOHLER W. Lithium niobate photonic wires[J]. Optics Express, 2009, 17(26): 24261-24268. [111] HU H, RICKEN R, SOHLER W. Large area, crystal-bonded LiNbO3 thin films and ridge waveguides of high refractive index contrast[C]. Photorefractive Materials, Effects, and Devices-Control of Light and Matter, Bad Honnef, Germany: 2009. [112] WU C, HORNG R, WUU D, et al. Thinning technology for lithium niobate wafer by surface activated bonding and chemical mechanical polishing[J]. Japanese Journal of Applied Physics, 2006, 45(4B): 3822. [113] RABIEI P, STEIER W H. Lithium niobate ridge waveguides and modulators fabricated using smart guide[J]. Applied Physics Letters, 2005, 86(16): 161115. [114] GUARINO A, POBERAJ G, REZZONICO D, et al. Electro-optically tunable microring resonators in lithium niobate[J]. Nature Photonics, 2007, 1: 407-410. [115] POBERAJ G, KOECHLIN M, SULSER F, et al. Ion-sliced lithium niobate thin films for active photonic devices[J]. Optical Materials, 2009, 31(7): 1054-1058. [116] KOECHLIN M, POBERAJ G, GÜNTER P. High-resolution laser lithography system based on two-dimensional acousto-optic deflection[J]. The Review of Scientific Instruments, 2009, 80(8): 085105. [117] POBERAJ G, KOECHLIN M, SULSER F, et al. High-density integrated optics in ion-sliced lithium niobate thin films[C]//SPIE OPTO. Proc SPIE 7604, Integrated Optics: Devices, Materials, and Technologies XIV, San Francisco, California, USA. 2010, 7604: 195-203. [118] LIN J T, XU Y X, FANG Z W, et al. Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining[J]. Scientific Reports, 2015, 5: 8072. [119] LIN J T, XU Y X, FANG Z W, et al. Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining[EB/OL]. 2014: arXiv: 1405.6473. http://arxiv.org/abs/1405.6473.pdf [120] ZHANG M, WANG C, CHENG R, et al. Monolithic ultra-high-Q lithium niobate microring resonator[J]. Optica, 2017, 4(12): 1536. [121] ZHU D, SHAO L B, YU M J, et al. Integrated photonics on thin-film lithium niobate[J]. Advances in Optics and Photonics, 2021, 13(2): 242-352. [122] WANG C, ZHANG M, STERN B, et al. Nanophotonic lithium niobate electro-optic modulators[J]. Optics Express, 2018, 26(2): 1547-1555. [123] WANG J, BO F, WAN S, et al. High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation[J]. Optics Express, 2015, 23(18): 23072-23078. [124] WOLF R, BREUNIG I, ZAPPE H, et al. Cascaded second-order optical nonlinearities in on-chip micro rings[J]. Optics Express, 2017, 25(24): 29927-29933. [125] WOLF R, BREUNIG I, ZAPPE H, et al. Scattering-loss reduction of ridge waveguides by sidewall polishing[J]. Optics Express, 2018, 26(16): 19815-19820. [126] LUKE K, KHAREL P, REIMER C, et al. Wafer-scale low-loss lithium niobate photonic integrated circuits[J]. Optics Express, 2020, 28(17): 24452-24458. [127] WANG H Y, XU Y, LI Z Y, et al. Thin-film lithium niobate photonic devices on 8-inch silicon substrates[C]//2023 Optical Fiber Communications Conference and Exhibition (OFC). San Diego, CA, USA. IEEE, 2023: 1-3. [128] ZHANG J H, FANG Z W, LIN J T, et al. Fabrication of crystalline microresonators of high quality factors with a controllable wedge angle on lithium niobate on insulator[J]. Nanomaterials, 2019, 9(9): 1218. [129] WU R B, WANG M, XU J, et al. Long low-loss-litium niobate on insulator waveguides with sub-nanometer surface roughness[J]. Nanomaterials, 2018, 8(11): 910. [130] GAO R H, ZHANG H S, BO F, et al. Broadband highly efficient nonlinear optical processes in on-chip integrated lithium niobate microdisk resonators of Q-factor above 108[J]. New Journal of Physics, 2021, 23(12): 123027. [131] GAO R H, YAO N, GUAN J L, et al. Lithium niobate microring with ultra-high Q factor above 108[J]. Chinese Optics Letters, 2022, 20(1): 011902. [132] LI C T, GUAN J L, LIN J T, et al. Ultra-high Q lithium niobate microring monolithically fabricated by photolithography assisted chemo-mechanical etching[J]. Optics Express, 2023, 31(19): 31556-31562. [133] CHEN J M, LIU Z X, SONG L B, et al. Ultra-high-speed high-resolution laser lithography for lithium niobate integrated photonics[C]//SPIE LASE. Proc SPIE 12411, Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications XXIII, San Francisco, California, USA. 2023, 12411: 41-50. [134] TAKIGAWA R, HIGURASHI E, KAWANISHI T, et al. Lithium niobate ridged waveguides with smooth vertical sidewalls fabricated by an ultra-precision cutting method[J]. Optics Express, 2014, 22(22): 27733-27738. [135] TAKIGAWA R, KAMIMURA K, ASAMI K, et al. Fabrication of a bonded LNOI waveguide structure on Si substrate using ultra-precision cutting[J]. Japanese Journal of Applied Physics, 2020, 59: SBBD03. [136] LI G Z, CHEN Y P, JIANG H W, et al. Broadband sum-frequency generation using d33 in periodically poled LiNbO3 thin film in the telecommunications band[J]. Optics Letters, 2017, 42(5): 939-942. [137] NISHIKAWA T, OZAWA A, NISHIDA Y, et al. Efficient 494 mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn∶LiNbO3 ridge waveguide[J]. Optics Express, 2009, 17(20): 17792-17800. [138] SUN J, GAN Y, XU C Q. Efficient green-light generation by proton-exchanged periodically poled MgO∶LiNbO3 ridge waveguide[J]. Optics Letters, 2011, 36(4): 549-551. [139] VOLK M F, SUNTSOV S, RÜTER C E, et al. Low loss ridge waveguides in lithium niobate thin films by optical grade diamond blade dicing[J]. Optics Express, 2016, 24(2): 1386-1391. [140] HENDRY I, TRAINOR L S, XU Y Q, et al. Experimental observation of internally pumped parametric oscillation and quadratic comb generation in a χ(2) whispering-gallery-mode microresonator[J]. Optics Letters, 2020, 45(5): 1204-1207. [141] ILCHENKO V S, SAVCHENKOV A A, MATSKO A B, et al. Nonlinear optics and crystalline whispering gallery mode cavities[J]. Physical Review Letters, 2004, 92(4): 043903. [142] CHEN G Y, LI N X, DA NG J, et al. Advances in lithium niobate photonics: development status and perspectives[J]. Advanced Photonics, 2022, 4: 034003. [143] RABIEI P, MA J C, KHAN S, et al. Heterogeneous lithium niobate photonics on silicon substrates[J]. Optics Express, 2013, 21(21): 25573-25581. [144] CHANG L, LI Y F, VOLET N, et al. Thin film wavelength converters for photonic integrated circuits[J]. Optica, 2016, 3(5): 531. [145] SOLMAZ M E, ADAMS D B, TAN W C, et al. Vertically integrated As2S3 ring resonator on LiNbO3[J]. Optics Letters, 2009, 34(11): 1735-1737. [146] CAO L, ABOKETAF A, WANG Z, et al. Hybrid amorphous silicon (a-Si∶H)-LiNbO3 electro-optic modulator[J]. Optics Communications, 2014, 330(1): 40-44. [147] BO F, WANG J, CUI J, et al. Lithium-niobate-silica hybrid whispering-gallery-mode resonators[J]. Advanced Materials, 2015, 27(48): 8075-8081. [148] LI S, CAI L T, WANG Y W, et al. Waveguides consisting of single-crystal lithium niobate thin film and oxidized titanium stripe[J]. Optics Express, 2015, 23(19): 24212-24219. [149] RAO A, PATIL A, RABIEI P, et al. High-performance and linear thin-film lithium niobate Mach-Zehnder modulators on silicon up to 50 GHz[J]. Optics Letters, 2016, 41(24): 5700-5703. [150] HAN X, JIANG Y H, FRIGG A, et al. Mode and polarization-division multiplexing based on silicon nitride loaded lithium niobate on insulator platform[J]. Laser & Photonics Reviews, 2022, 16(1): 2100529. [151] ZHANG X T, HE L Y, GAN X, et al. Quasi-bound states in the continuum enhanced second-harmonic generation in thin-film lithium niobate[J]. Laser & Photonics Reviews, 2022, 16(9): 2200031. [152] YU Z J, TONG Y Y, TSANG H K, et al. High-dimensional communication on etchless lithium niobate platform with photonic bound states in the continuum[J]. Nature Communications, 2020, 11: 2602. [153] YU Z J, XI X, MA J W, et al. Photonic integrated circuits with bound states in the continuum[J]. Optica, 2019, 6(10): 1342. [154] YU Y, YU Z J, WANG L, et al. Ultralow-loss etchless lithium niobate integrated photonics at near-visible wavelengths[C]//2022 Conference on Lasers and Electro-Optics (CLEO). San Jose, CA, USA. IEEE, 2022: 1-2. [155] XIE Z, BO F, LIN J, et al. Recent development in integrated lithium niobate photonics[J]. Advances in Physics: X: under peer review. [156] GE L C, JIANG H W, LIU Y A, et al. Quality improvement and mode evolution of high-Q lithium niobate micro-disk induced by “light annealing”[J]. Optical Materials Express, 2019, 9(4): 1632. [157] ZHUANG R J, HE J Z, QI Y F, et al. High-Q thin-film lithium niobate microrings fabricated with wet etching[J]. Advanced Materials, 2023, 35(3): e2208113. [158] LIN J T, ZHOU J X, WU R B, et al. High-precision propagation-loss measurement of single-mode optical waveguides on lithium niobate on insulator[J]. Micromachines, 2019, 10(9): 612. [159] PAN B C, HU J Y, HUANG Y S, et al. Demonstration of high-speed thin-film lithium-niobate-on-insulator optical modulators at the 2-μm wavelength[J]. Optics Express, 2021, 29(12): 17710-17717. [160] WU R B, LIN J T, WANG M, et al. Fabrication of a multifunctional photonic integrated chip on lithium niobate on insulator using femtosecond laser-assisted chemomechanical polish[J]. Optics Letters, 2019, 44(19): 4698-4701. [161] LUO H Z, CHEN Z Y, LI H, et al. High-performance polarization splitter-rotator based on lithium niobate-on-insulator platform[J]. IEEE Photonics Technology Letters, 2021, 33(24): 1423-1426. [162] WANG X H, PAN A, LI T A, et al. Efficient polarization splitter-rotator on thin-film lithium niobate[J]. Optics Express, 2021, 29(23): 38044-38052. [163] SHEN Y, RUAN Z L, CHEN K X, et al. Broadband polarization splitter-rotator on a thin-film lithium niobate with conversion-enhanced adiabatic tapers[J]. Optics Express, 2023, 31(2): 1354-1366. [164] CHEN Z X, YANG J W, WONG W H, et al. Broadband adiabatic polarization rotator-splitter based on a lithium niobate on insulator platform[J]. Photonics Research, 2021, 9(12): 2319-2324. [165] LIN Z J, LIN Y M, LI H, et al. High-performance polarization management devices based on thin-film lithium niobate[J]. Light: Science & Applications, 2022, 11: 93. [166] ZHENG Y L, CHEN X F. Nonlinear wave mixing in lithium niobate thin film[J]. Advances in Physics X, 2021, 6(1): 1889402. [167] VAZIMALI M G, FATHPOUR S. Applications of thin-film lithium niobate in nonlinear integrated photonics[J]. Advanced Photonics, 2022, 4: 034001. [168] WANG Z J, WANG C H, YU H K. Advances in nonlinear photonic devices based on lithium niobate waveguides[J]. Journal of Physics D Applied Physics, 2023, 56(8): 083001. [169] YU H K, LUN Y P, LIN J T, et al. Frequency-resolved optical gating in transverse geometry for on-chip optical pulse diagnostics[J]. Laser & Photonics Reviews, 2023, 17(12): 2201017. [170] VAHALA K J. Optical microcavities[J]. Nature, 2003, 424: 839-846. [171] GE R, YAN X S, LIANG Z K, et al. Large quality factor enhancement based on cascaded uniform lithium niobate bichromatic photonic crystal cavities[J]. Optics Letters, 2023, 48(1): 113-116. [172] LI M X, LING J W, HE Y, et al. Lithium niobate photonic-crystal electro-optic modulator[J]. Nature Communications, 2020, 11: 4123. [173] XIE R R, LI G Q, CHEN F, et al. Microresonators in lithium niobate thin films[J]. Advanced Optical Materials, 2021, 9(19): 2100539. [174] SONG Q H, GE L, STONE A D, et al. Directional laser emission from a wavelength-scale chaotic microcavity[J]. Physical Review Letters, 2010, 105(10): 103902. [175] WIERSIG J, HENTSCHEL M. Combining directional light output and ultralow loss in deformed microdisks[J]. Physical Review Letters, 2008, 100(3): 033901. [176] WANG L, WANG C, WANG J, et al. High-Q chaotic lithium niobate microdisk cavity[J]. Optics Letters, 2018, 43(12): 2917-2920. [177] GAO A, YANG C, CHEN L K, et al. Directional emission in X-cut lithium niobate microresonators without chaos dynamics[J]. Photonics Research, 2022, 10(2): 401-406. [178] YANG Y H, XU X B, WANG J Q, et al. Nonlinear optical radiation of a lithium niobate microcavity[J]. Physical Review Applied, 2023, 19(3): 034087. [179] FANG Z W, HAQUE S, FARAJOLLAHI S, et al. Polygon coherent modes in a weakly perturbed whispering gallery microresonator for efficient second harmonic, optomechanical, and frequency comb generations[J]. Physical Review Letters, 2020, 125(17): 173901. [180] FU B T, GAO R H, LIN J T, et al. Modes trimming and clustering in a weakly perturbed high-Q whispering gallery microresonator[J]. Laser & Photonics Reviews, 2023, 17(11): 2300116. [181] FARAJOLLAHI S, FANG Z W, LIN J T, et al. Multimode perturbation modeling for cavity polygon and star modes[J]. Physical Review A, 2023, 108(3): 033520. [182] 熊 霄, 曹启韬, 肖云峰. 铌酸锂集成光子器件的发展与机遇[J]. 物理学报, 2023, 72: 234201. XIONG X, CAO Q T, XIAO Y F. Thin-film lithium niobate photonic integrated devices: advances and oppotunities[J]. Acta Physica Sinica, 2023, 72: 234201 (in Chinese). [183] 李庚霖, 贾曰辰, 陈 峰. 绝缘体上铌酸锂薄膜片上光子学器件的研究进展[J]. 物理学报, 2020, 69: 157801. LI G L, JIA Y C, CHEN F. Research progress of photonics devices on lithium-niobate-on-insulator thin films[J]. Acta Physica Sinica, 2020, 69: 157801 (in Chinese). [184] 汪 旻, 乔玲玲, 方致伟, 等. 基于超快激光光刻的有源铌酸锂光子集成[J]. 光学学报, 2023, 43: 1623014. WANG M, QIAO L L, FANG Z W, et al. Active lithium niobate photonic integration based on ultrafast laser lithography[J]. Acta Optica Sinica, 2023, 43: 1623014 (in Chinese). [185] 田晓慧, 尚鸣昊, 祝世宁, 等. 铌酸锂基光量子器件与集成技术:机遇与挑战[J]. 物理, 2023, 52: 534-541. TIAN X H, SHANG M H, ZHU S N, et al. Lithium niobate based photonic quantum devices and integration technology: opportunities and challenges[J]. Physics, 2023, 52: 534-541 (in Chinese). [186] CHENG J, GAO D S, DONG J J, et al. Ultra-efficient second harmonic generation via mode phase matching in integrated lithium niobate racetrack resonators[J]. Optics Express, 2023, 31(22): 36736-36744. [187] LIN J T, XU Y X, FANG Z W, et al. Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining[J]. Science China Physics, Mechanics & Astronomy, 2015, 58(11): 114209. [188] LIN J T, XU Y X, NI J L, et al. Phase-matched second-harmonic generation in an on-chip LiNbO3 microresonator[J]. Physical Review Applied, 2016, 6(1): 014002. [189] HAO Z Z, ZHANG L, MAO W B, et al. Second-harmonic generation using d33 in periodically poled lithium niobate microdisk resonators[J]. Photonics Research, 2020, 8(3): 311. [190] LU J J, SURYA J B, LIU X W, et al. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250, 000%/W[J]. Optica, 2019, 6(12): 1455. [191] CHEN J Y, TANG C, JIN M W, et al. Efficient frequency doubling with active stabilization on chip[J]. Laser & Photonics Reviews, 2021, 15(11): 2100091. [192] ZHANG L, WU X, HAO Z Z, et al. Second-harmonic and cascaded third-harmonic generation in generalized quasiperiodic poled lithium niobate waveguides[J]. Optics Letters, 2023, 48(7): 1906-1909. [193] YUAN T G, WU J W, LIU Y A, et al. Chip-scale spontaneous quasi-phase matched second harmonic generation in a micro-racetrack resonator[J]. Science China Physics, Mechanics & Astronomy, 2023, 66(8): 284211. [194] WU X, HAO Z Z, ZHANG L, et al. Second-harmonic generation with a 440, 000%·W-1 conversion efficiency in a lithium niobate microcavity without periodic poling[EB/OL]. 2023: arXiv: 2312.07024. http://arxiv.org/abs/2312.07024.pdf [195] DU H Y, ZHANG X Q, LV H Y, et al. High-efficiency second harmonic generation in a micro-resonator on dual-layered lithium niobate[J]. Optics Letters, 2024, 49(2): 391-394. [196] LU J J, AL SAYEM A, GONG Z, et al. Ultralow-threshold thin-film lithium niobate optical parametric oscillator[J]. Optica, 2021, 8(4): 539. [197] MA Z H, CHEN J Y, LI Z, et al. Ultrabright quantum photon sources on chip[J]. Physical Review Letters, 2020, 125(26): 263602. [198] LUO R, JIANG H W, ROGERS S, et al. On-chip second-harmonic generation and broadband parametric down-conversion in a lithium niobate microresonator[J]. Optics Express, 2017, 25(20): 24531-24539. [199] LIU H Y, SHANG M H, LIU X Y, et al. Deterministic N-photon state generation using lithium niobate on insulator device[J]. Advanced Photonics Nexus, 2022, 2(1): 016003. [200] HU H, BÜCHTER D, GUI L, et al. Lithium niobate photonic wires[C]//2010 23rd Annual Meeting of the IEEE Photonics Society. Denver, CO, USA. IEEE, 2010: 254-255. [201] RAO A, MALINOWSKI M, HONARDOOST A, et al. Second-harmonic generation in periodically-poled thin film lithium niobate wafer-bonded on silicon[J]. Optics Express, 2016, 24(26): 29941-29947. [202] WANG C, LANGROCK C, MARANDI A, et al. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides[J]. Optica, 2018, 5(11): 1438. [203] NIU Y F, LIN C, LIU X Y, et al. Optimizing the efficiency of a periodically poled LNOI waveguide using in situ monitoring of the ferroelectric domains[J]. Applied Physics Letters, 2020, 116(10): 101104. [204] WU X, ZHANG L, HAO Z Z, et al. Broadband second-harmonic generation in step-chirped periodically poled lithium niobate waveguides[J]. Optics Letters, 2022, 47(7): 1574-1577. [205] ZHANG Y T, LI H, DING T T, et al. Scalable, fiber-compatible lithium-niobate-on-insulator micro-waveguides for efficient nonlinear photonics[J]. Optica, 2023, 10(6): 688. [206] WANG L, ZHANG X Q, CHEN F. Efficient second harmonic generation in a reverse-polarization dual-layer crystalline thin film nanophotonic waveguide[J]. Laser & Photonics Reviews, 2021, 15(12): 2100409. [207] CHENG R, HUANG S, XU Q, et al. Research progress of lithium niobate waveguide and its application in quantum information technology[C]//2021 Photonics & Electromagnetics Research Symposium (PIERS). Hangzhou, China. IEEE, 2021: 877-896. [208] CHENG X, SARIHAN M C, CHANG K C, et al. Design of spontaneous parametric down-conversion in integrated hybrid SixNy-PPLN waveguides[J]. Optics Express, 2019, 27(21): 30773-30787. [209] KIPPENBERG T J, GAETA A L, LIPSON M, et al. Dissipative Kerr solitons in optical microresonators[J]. Science, 2018, 361(6402): eaan8083. [210] GONG Z, LI M, LIU X W, et al. Photonic dissipation control for Kerr soliton generation in strongly raman-active media[J]. Physical Review Letters, 2020, 125(18): 183901. [211] GONG Z, LIU X W, XU Y T, et al. Soliton microcomb generation at 2 μm in z-cut lithium niobate microring resonators[J]. Optics Letters, 2019, 44(12): 3182-3185. [212] HE Y, LOPEZ-RIOS R, YANG Q F, et al. Octave-spanning lithium niobate soliton microcombs[C]//2021 Conference on Lasers and Electro-Optics (CLEO). San Jose, CA, USA. IEEE, 2021: 1-2. [213] FU B T, GAO R H, YAO N, et al. Generation of Kerr soliton microcomb in a normally dispersed lithium niobate microdisk resonator by mode trimming[EB/OL]. 2023: arXiv: 2309.00778. http://arxiv.org/abs/2309.00778.pdf [214] ZHUANG R J, NI K, WU G H, et al. Electro-optic frequency combs: theory, characteristics, and applications[J]. Laser & Photonics Reviews, 2023, 17(6): 2200353. [215] ZHANG M, BUSCAINO B, WANG C, et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator[J]. Nature, 2019, 568: 373-377. [216] HU Y W, YU M J, BUSCAINO B, et al. High-efficiency and broadband on-chip electro-optic frequency comb generators[J]. Nature Photonics, 2022, 16: 679-685. [217] ZHANG K, SUN W Z, CHEN Y K, et al. A power-efficient integrated lithium niobate electro-optic comb generator[J]. Communications Physics, 2023, 6: 17. [218] KHAREL P, REIMER C, LUKE K, et al. Breaking voltage-bandwidth limits in integrated lithium niobate modulators using micro-structured electrodes[J]. Optica, 2021, 8(3): 357. [219] WU R B, GAO L, LIANG Y T, et al. High-production-rate fabrication of low-loss lithium niobate electro-optic modulators using photolithography assisted chemo-mechanical etching (PLACE)[J]. Micromachines, 2022, 13(3): 378. [220] XU M Y, ZHU Y T, PITTAL A F, et al. Dual-polarization thin-film lithium niobate in-phase quadrature modulators for terabit-per-second transmission[J]. Optica, 2022, 9(1): 61. [221] CHEN G X, WANG H H, CHEN B, et al. Compact slow-light waveguide and modulator on thin-film lithium niobate platform[J]. Nanophotonics, 2023, 12(18): 306. [222] PROST M, LIU G Y, BEN YOO S J. A compact thin-film lithium niobate platform with arrayed waveguide gratings and MMIs[C]//Optical Fiber Communication Conference. San Diego, California. Washington, D.C.: OSA, 2018. [223] LIU H X, PAN B C, HUANG Y S, et al. Ultra-compact lithium niobate photonic chip for high-capacity and energy-efficient wavelength-division-multiplexing transmitters[J]. Light: Advanced Manufacturing, 2023, 4(2): 13. [224] LIU Y A, YAN X S, WU J W, et al. On-chip erbium-doped lithium niobate microcavity laser[J]. Science China Physics, Mechanics & Astronomy, 2020, 64(3): 234262. [225] LUO Q, YANG C, ZHANG R, et al. On-chip erbium-doped lithium niobate microring lasers[J]. Optics Letters, 2021, 46(13): 3275-3278. [226] WANG Z, FANG Z W, LIU Z X, et al. On-chip tunable microdisk laser fabricated on Er3+-doped lithium niobate on insulator[J]. Optics Letters, 2021, 46(2): 380-383. [227] XIAO Z Y, WU K, CAI M L, et al. Single-frequency integrated laser on erbium-doped lithium niobate on insulator[J]. Optics Letters, 2021, 46(17): 4128. [228] LI M H, GAO R H, LI C T, et al. Erbium-ytterbium Co-doped lithium niobate single-mode microdisk laser with an ultralow threshold of 1 uW[EB/OL]. 2023: arXiv: 2309.10512. http://arxiv.org/abs/2309.10512.pdf [229] LUO Q, YANG C, HAO Z Z, et al. On-chip erbium-ytterbium-co-doped lithium niobate microdisk laser with an ultralow threshold[J]. Optics Letters, 2023, 48(13): 3447-3450. [230] GUAN J L, LI C T, GAO R H, et al. Monolithically integrated narrow-bandwidth disk laser on thin-film lithium niobate[J]. Optics Laser Technology, 2024, 168: 109908. [231] LI Z H, WANG R N, LIHACHEV G, et al. Tightly confining lithium niobate photonic integrated circuits and lasers[EB/OL]. 2022: arXiv: 2208.05556. http://arxiv.org/abs/2208.05556.pdf [232] LING J W, STAFFA J, WANG H M, et al. Self-injection locked frequency conversion laser[J]. Laser & Photonics Reviews, 2023, 17(5): 2200663. [233] YU M J, OKAWACHI Y, CHENG R, et al. Raman lasing and soliton mode-locking in lithium niobate microresonators[J]. Light: Science & Applications, 2020, 9: 9. [234] ZHAO Y J, LIU X Y, YVIND K, et al. Widely-tunable, multi-band Raman laser based on dispersion-managed thin-film lithium niobate microring resonators[J]. Communications Physics, 2023, 6: 350. [235] WANG M, YAO N, WU R B, et al. Strong nonlinear optics in on-chip coupled lithium niobate microdisk photonic molecules[J]. New Journal of Physics, 2020, 22(7): 073030. [236] ZHAO G H, LIN J T, FU B T, et al. Integrated multi-color Raman microlasers with ultra-low pump levels in single high-Q lithium niobate microdisks[EB/OL]. 2023: arXiv: 2312.10347. http://arxiv.org/abs/2312.10347.pdf [237] ZHOU Y, ZHU Y R, FANG Z W, et al. Monolithically integrated active passive waveguide array fabricated on thin film lithium niobate using a single continuous photolithography process[J]. Laser & Photonics Reviews, 2023, 17(4): 2200686. [238] ZHENG Y, ZHONG H Z, ZHANG H S, et al. Electro-optically programmable photonic circuits enabled by wafer-scale integration on thin-film lithium niobate[J]. Physical Review Research, 2023, 5(3): 033206. |
[1] | 刘宏德, 王维维, 张中正, 郑大怀, 刘士国, 孔勇发, 许京军. 铌酸锂晶体的缺陷结构[J]. 人工晶体学报, 2024, 53(3): 355-371. |
[2] | 叶志霖, 李世凤, 崔国新, 尹志军, 王学斌, 赵刚, 胡小鹏, 祝世宁. 晶圆级薄膜铌酸锂波导制备工艺与性能表征[J]. 人工晶体学报, 2024, 53(3): 426-433. |
[3] | 刘齐鲁, 郑名扬, 高洋, 张龙喜, 宋于坤, 王孚雷, 刘宏, 王东周, 桑元华. 极化电极均匀化设计调控铌酸锂周期极化占空比[J]. 人工晶体学报, 2024, 53(3): 449-457. |
[4] | 段雨濛, 贾曰辰, 吕金蔓. 飞秒激光直写铌酸锂晶体半包层光波导[J]. 人工晶体学报, 2024, 53(3): 458-464. |
[5] | 陈力, 周旭东, 袁明瑞, 肖恢芙, 田永辉. 基于亚波长光栅辅助定向耦合器的集成铌酸锂偏振分束器[J]. 人工晶体学报, 2024, 53(3): 465-471. |
[6] | 南博洋, 洪瑞金, 陶春先, 王琦, 林辉, 韩朝霞, 张大伟. 基于金属锡掺杂浓度变化的光学性能可调谐ITO薄膜制备研究[J]. 人工晶体学报, 2023, 52(9): 1617-1623. |
[7] | 程曦月, 秘汉相, 洪茂椿, 邓水全. 非线性光学原子响应理论及最新进展[J]. 人工晶体学报, 2023, 52(7): 1270-1285. |
[8] | 刘青雄, 王天予, 刘孚安, 吴倩, 尹延如, 赫崇君, 高泽亮, 夏明军. 非线性光学晶体K3B6O10Br的生长与光电性能研究[J]. 人工晶体学报, 2023, 52(7): 1296-1301. |
[9] | 任怡静, 马新国, 张锋, 陆晶晶, 张力, 王晗. BaTiO3薄膜的制备及其在电光调制器的应用[J]. 人工晶体学报, 2023, 52(4): 688-700. |
[10] | 陈建荣, 张杰, 师瑞泽, 石爽爽, 杨志奇. 晶体人生丨黄朝恩:从研发到成果转化的非线性“晶”彩人生[J]. 人工晶体学报, 2023, 52(12): 2089-2093. |
[11] | 石爽爽, 王国影, 肖亚波, 王海丽, 陈建荣. CLBO单晶生长及性能研究[J]. 人工晶体学报, 2023, 52(12): 2146-2150. |
[12] | 徐亚东. 晶体人生丨陶绪堂:从有机-无机复合材料走进多彩晶体世界[J]. 人工晶体学报, 2022, 51(9-10): 1519-1522. |
[13] | 范慧歆, 罗敏, 叶宁. 含平面共轭构型的非线性光学晶体[J]. 人工晶体学报, 2022, 51(9-10): 1588-1597. |
[14] | 何楠, 公丕富, 林哲帅. A7MIIRE2(B5O10)3系列紫外非线性光学晶体的研究进展[J]. 人工晶体学报, 2022, 51(9-10): 1598-1607. |
[15] | 张雨彤, 朱梦淇, 王彪, 贾鑫辉, 李静, 王继扬. 碳酸钙镁石家族非线性光学晶体研究进展[J]. 人工晶体学报, 2022, 51(9-10): 1608-1625. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||