人工晶体学报 ›› 2024, Vol. 53 ›› Issue (3): 395-409.
张煜晨, 李三兵, 许京军, 张国权
收稿日期:
2024-01-07
发布日期:
2024-04-02
通信作者:
张国权,博士,教授。E-mail:zhanggq@nankai.edu.cn
作者简介:
张煜晨(1995—),女,辽宁省人,博士研究生。E-mail:zhangyuchen@mail.nankai.edu.cn
基金资助:
ZHANG Yuchen, LI Sanbing, XU Jingjun, ZHANG Guoquan
Received:
2024-01-07
Published:
2024-04-02
摘要: 铌酸锂(LiNbO3,LN)是一种多功能的单轴铁电材料,广泛应用于光学调制器、光学频率梳、光波导等领域。导电畴壁(DW)作为镶嵌在绝缘材料中纳米尺度的导电通道,在非易失性存储器、逻辑门、晶体管等领域展现出重要的应用前景,促进了铌酸锂在纳米光电子学领域的应用。绝缘体上铌酸锂薄膜(LNOI)畴壁p-n结的实现有望进一步促进铌酸锂基光电一体化芯片的发展进程。本文简要回顾了铌酸锂导电畴壁的研究进展,介绍了畴壁的制备、导电机制、导电类型和畴壁的应用,重点介绍了铌酸锂畴壁p-n结的研究,进一步结合应用热点概述了铌酸锂畴壁光电子器件开发进程中的关键问题、机遇和挑战。
中图分类号:
张煜晨, 李三兵, 许京军, 张国权. 铌酸锂导电畴壁及其应用[J]. 人工晶体学报, 2024, 53(3): 395-409.
ZHANG Yuchen, LI Sanbing, XU Jingjun, ZHANG Guoquan. Conductive Domain Wall and Its Applications in Lithium Niobate[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(3): 395-409.
[1] GOPALAN V, DIEROLF V, SCRYMGEOUR D A. Defect-domain wall interactions in trigonal ferroelectrics[J]. Annual Review of Materials Research, 2007, 37: 449-489. [2] MCGILLY L J, YUDIN P, FEIGL L, et al. Controlling domain wall motion in ferroelectric thin films[J]. Nature Nanotechnology, 2015, 10: 145-150. [3] MCQUAID R G P, CAMPBELL M P, WHATMORE R W, et al. Injection and controlled motion of conducting domain walls in improper ferroelectric Cu-Cl boracite[J]. Nature Communications, 2017, 8: 15105. [4] ESIN A A, AKHMATKHANOV A R, SHUR V Y. Superfast domain wall motion in lithium niobate single crystals. Analogy with crystal growth[J]. Applied Physics Letters, 2019, 114(19): 192902. [5] ELISEEV E A, MOROZOVSKA A N, SVECHNIKOV G S, et al. Static conductivity of charged domain walls in uniaxial ferroelectric semiconductors[J]. Physical Review B, 2011, 83(23): 235313. [6] YANG S Y, SEIDEL J, BYRNES S J, et al. Above-bandgap voltages from ferroelectric photovoltaic devices[J]. Nature Nanotechnology, 2010, 5: 143-147. [7] STEFANI C, PONET L, SHAPOVALOV K, et al. Mechanical softness of ferroelectric 180° domain walls[J]. Physical Review X, 2020, 10(4): 041001. [8] GENG Y N, LEE N, CHOI Y J, et al. Collective magnetism at multiferroic vortex domain walls[J]. Nano Letters, 2012, 12(12): 6055-6059. [9] JURASCHEK D M, MEIER Q N, TRASSIN M, et al. Dynamical magnetic field accompanying the motion of ferroelectric domain walls[J]. Physical Review Letters, 2019, 123(12): 127601. [10] SCHRÖDER M, HAUßMANN A, THIESSEN A, et al. Conducting domain walls in lithium niobate single crystals[J]. Advanced Functional Materials, 2012, 22(18): 3936-3944. [11] GODAU C, KÄMPFE T, THIESSEN A, et al. Enhancing the domain wall conductivity in lithium niobate single crystals[J]. ACS Nano, 2017, 11(5): 4816-4824. [12] SEIDEL J, MARTIN L W, HE Q, et al. Conduction at domain walls in oxide multiferroics[J]. Nature Materials, 2009, 8: 229-234. [13] FAROKHIPOOR S, NOHEDA B. Conduction through 71° domain walls in BiFeO3 thin films[J]. Physical Review Letters, 2011, 107(12): 127601. [14] MAKSYMOVYCH P, SEIDEL J, CHU Y H, et al. Dynamic conductivity of ferroelectric domain walls in BiFeO3[J]. Nano Letters, 2011, 11(5): 1906-1912. [15] GUYONNET J, GAPONENKO I, GARIGLIO S, et al. Conduction at domain walls in insulating Pb(Zr0.2Ti0.8)O3 thin films[J]. Advanced Materials, 2011, 23(45): 5377-5382. [16] MAKSYMOVYCH P, MOROZOVSKA A N, YU P, et al. Tunable metallic conductance in ferroelectric nanodomains[J]. Nano Letters, 2012, 12(1): 209-213. [17] MEIER D, SEIDEL J, CANO A, et al. Anisotropic conductance at improper ferroelectric domain walls[J]. Nature Materials, 2012, 11: 284-288. [18] SLUKA T, TAGANTSEV A K, BEDNYAKOV P, et al. Free-electron gas at charged domain walls in insulating BaTiO3[J]. Nature Communications, 2013, 4: 1808. [19] LINDGREN G, CANALIAS C. Domain wall conductivity in KTiOPO4 crystals[J]. APL Materials, 2017, 5(7): 076108. [20] LINDGREN G, CANALIAS C. Conductive atomic force microscopy studies of charged domain walls in KTiOPO4[J]. AIP Advances, 2018, 8(8): 085214. [21] LINDGREN G, KALININ S V, VASUDEVAN R K, et al. Polarization-dependent local conductivity and activation energy in KTiOPO4[J]. Applied Physics Letters, 2019, 114(19): 192901. [22] JIA C L, MI S B, URBAN K, et al. Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films[J]. Nature Materials, 2008, 7: 57-61. [23] CHIU Y P, CHEN Y T, HUANG B C, et al. Atomic-scale evolution of local electronic structure across multiferroic domain walls[J]. Advanced Materials, 2011, 23(13): 1530-1534. [24] GONNISSEN J, BATUK D, NATAF G F, et al. Direct observation of ferroelectric domain walls in LiNbO3: wall-meanders, kinks, and local electric charges[J]. Advanced Functional Materials, 2016, 26(42): 7599-7604. [25] SHARMA P, ZHANG Q, SANDO D, et al. Nonvolatile ferroelectric domain wall memory[J]. Science Advances, 2017, 3(6): e1700512. [26] JIANG J, BAI Z L, CHEN Z H, et al. Temporary formation of highly conducting domain walls for non-destructive read-out of ferroelectric domain-wall resistance switching memories[J]. Nature Materials, 2018, 17: 49-56. [27] LIU Z R, WANG H, LI M, et al. In-plane charged domain walls with memristive behaviour in a ferroelectric film[J]. Nature, 2023, 613: 656-661. [28] WANG J, MA J, HUANG H B, et al. Ferroelectric domain-wall logic units[J]. Nature Communications, 2022, 13: 3255. [29] BÉA H, PARUCH P. A way forward along domain walls[J]. Nature Materials, 2009, 8: 168-169. [30] WEMPLE S H, DIDOMENICO M Jr, CAMLIBEL I. Relationship between linear and quadratic electro-optic coefficients in LiNbO3, LiTaO3, and other oxygen-octahedra ferroelectrics based on direct measurement of spontaneous polarization[J]. Applied Physics Letters, 1968, 12(6): 209-211. [31] WEIS R S, GAYLORD T K. Lithium niobate: summary of physical properties and crystal structure[J]. Applied Physics A, 1985, 37(4): 191-203. [32] BOYD G D, MILLER R C, NASSAU K, et al. LiNbO3: an efficient phase matchable nonlinear optical material[J]. Applied Physics Letters, 1964, 5(11): 234-236. [33] 高博锋, 任梦昕, 郑大怀, 等. 铌酸锂的耄耋之路: 历史与若干进展[J]. 人工晶体学报, 2021, 50(7): 1183-1199. GAO B F, REN M X, ZHENG D H, et al. Long-lived lithium niobate: history and progress[J]. Journal of Synthetic Crystals, 2021, 50(7): 1183-1199 (in Chinese). [34] HE M B, XU M Y, REN Y X, et al. High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s-1 and beyond[J]. Nature Photonics, 2019, 13: 359-364. [35] WANG C, LANGROCK C, MARANDI A, et al. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides[J]. Optica, 2018, 5(11): 1438. [36] LIN J T, YAO N, HAO Z Z, et al. Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator[J]. Physical Review Letters, 2019, 122(17): 173903. [37] LU J J, AL SAYEM A, GONG Z, et al. Ultralow-threshold thin-film lithium niobate optical parametric oscillator[J]. Optica, 2021, 8(4): 539. [38] CAI L T, MAHMOUD A, KHAN M, et al. Acousto-optical modulation of thin film lithium niobate waveguide devices[J]. Photonics Research, 2019, 7(9): 1003. [39] LUO Q, BO F, KONG Y F, et al. Advances in lithium niobate thin-film lasers and amplifiers: a review[J]. Advanced Photonics, 2023, 5(3): 034002. [40] GUO Q S, SEKINE R, LEDEZMA L, et al. Femtojoule femtosecond all-optical switching in lithium niobate nanophotonics[J]. Nature Photonics, 2022, 16: 625-631. [41] ZHANG Y Q, LUO Q, ZHENG D H, et al. Highly efficient on-chip erbium-ytterbium Co-doped lithium niobate waveguide amplifiers[J]. Photonics Research, 2023, 11(10): 1733. [42] ZHANG M, BUSCAINO B, WANG C, et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator[J]. Nature, 2019, 568: 373-377. [43] YANG C, YANG S, DU F, et al. 1550-nm band soliton microcombs in ytterbium-doped lithium-niobate microrings[J]. Laser & Photonics Reviews, 2023, 17(9): 2200510. [44] XIN F F, ZHAI Z H, WANG X J, et al. Threshold behavior of the Einstein oscillator, electron-phonon interaction, band-edge absorption, and small hole polarons in LiNbO3∶Mg crystals[J]. Physical Review B, 2012, 86(16): 165132. [45] STAEBLER D L, AMODEI J J. Thermally fixed holograms in LiNbO3[J]. IEEE Transactions on Sonics and Ultrasonics, 1972, 19(2): 107-114. [46] WONG K K. Properties of lithium niobate[M]. London: The Institution of Electrical Engineers, 2002. [47] KIRBUS B, GODAU C, WEHMEIER L, et al. Real-time 3D imaging of nanoscale ferroelectric domain wall dynamics in lithium niobate single crystals under electric stimuli: implications for domain-wall-based nanoelectronic devices[J]. ACS Applied Nano Materials, 2019, 2(9): 5787-5794. [48] MCCONVILLE J P V, LU H D, WANG B, et al. Ferroelectric domain wall memristor[J]. Advanced Functional Materials, 2020, 30(28): 2000109. [49] SUNA A, MCCLUSKEY C J, MAGUIRE J R, et al. Tuning local conductance to enable demonstrator ferroelectric domain wall diodes and logic gates[J]. Advanced Physics Research, 2023, 2(5): 2200095. [50] CHAI X J, JIANG J, ZHANG Q H, et al. Nonvolatile ferroelectric field-effect transistors[J]. Nature Communications, 2020, 11: 2811. [51] QIAN Y Z, ZHANG Y C, XU J J, et al. Domain-wall p-n junction in lithium niobate thin film on an insulator[J]. Physical Review Applied, 2022, 17(4): 044011. [52] VUL B M, GURO G M, IVANCHIK I I. Encountering domains in ferroelectrics[J]. Ferroelectrics, 1973, 6(1): 29-31. [53] ZHANG Y, LU H D, YAN X X, et al. Intrinsic conductance of domain walls in BiFeO3[J]. Advanced Materials, 2019, 31(36): e1902099. [54] MUNDY J A, SCHAAB J, KUMAGAI Y, et al. Functional electronic inversion layers at ferroelectric domain walls[J]. Nature Materials, 2017, 16: 622-627. [55] ROJAC T, BENCAN A, DRAZIC G, et al. Domain-wall conduction in ferroelectric BiFeO3 controlled by accumulation of charged defects[J]. Nature Materials, 2017, 16: 322-327. [56] MEIER D, SELBACH S M. Ferroelectric domain walls for nanotechnology[J]. Nature Reviews Materials, 2022, 7: 157-173. [57] 孔勇发, 许京军, 张光寅, 等. 多功能光电材料: 铌酸锂晶体[M]. 北京: 科学出版社, 2005. KONG Y F, XU J J, ZHANG G Y, et al. Multifunctional optoelectronic material: lithium niobate crystal[M]. Beijing: Science Press, 2005 (in Chinese). [58] STONE G, LEE D, XU H X, et al. Local probing of the interaction between intrinsic defects and ferroelectric domain walls in lithium niobate[J]. Applied Physics Letters, 2013, 102(4): 042905. [59] NATAF G F, AKTAS O, GRANZOW T, et al. Influence of defects and domain walls on dielectric and mechanical resonances in LiNbO3[J]. Journal of Physics Condensed Matter: an Institute of Physics Journal, 2016, 28(1): 015901. [60] MILLER G D, BYER R L. Periodically poled lithium niobate: modeling, fabrication, and nonlinear-optical performance[M]. Stanford: Stanford University, 1998. [61] SHUR V Y, AKHMATKHANOV A R, BATURIN I S. Micro- and nano-domain engineering in lithium niobate[J]. Applied Physics Reviews, 2015, 2(4): 040604. [62] FUJIMURA M, SOHMURA T, SUHARA T. Fabrication of domain-inverted gratings in MgO∶LiNbO3 by applying voltage under ultraviolet irradiation through photomask at room temperature[J]. Electronics Letters, 2003, 39(9): 719. [63] WANG W J, KONG Y F, LIU H D, et al. Light-induced domain reversal in doped lithium niobate crystals[J]. Journal of Applied Physics, 2009, 105(4): 043105. [64] VALDIVIA C E, SONES C L, SCOTT J G, et al. Nanoscale surface domain formation on the +z face of lithium niobate by pulsed ultraviolet laser illumination[J]. Applied Physics Letters, 2005, 86(2): 022906. [65] MUIR A C, SONES C L, MAILIS S, et al. Direct-writing of inverted domains in lithium niobate using a continuous wave ultra violet laser[J]. Optics Express, 2008, 16(4): 2336-2350. [66] SHUR V Y, KUZNETSOV D K, MINGALIEV E A, et al. In situ investigation of formation of self-assembled nanodomain structure in lithium niobate after pulse laser irradiation[J]. Applied Physics Letters, 2011, 99(8): 082901. [67] LILIENBLUM M, SOERGEL E. Anomalous domain inversion in LiNbO3 single crystals investigated by scanning probe microscopy[J]. Journal of Applied Physics, 2011, 110(5): 052018. [68] SHUR V Y, CHEZGANOV D S, SMIRNOV M M, et al. Domain switching by electron beam irradiation of Z+-polar surface in Mg-doped lithium niobate[J]. Applied Physics Letters, 2014, 105(5): 052908. [69] CHEZGANOV D S, SHUR V Y, VLASOV E O, et al. Influence of the artificial surface dielectric layer on domain patterning by ion beam in MgO-doped lithium niobate single crystals[J]. Applied Physics Letters, 2017, 110(8): 082903. [70] KOKHANCHIK L S, EMELIN E V, SIROTKIN V V. Morphology features of ferroelectric submicron domains written by E-beam under a metal film in LiNbO3[J]. Coatings, 2022, 12(12): 1881. [71] IEVLEV A V, JESSE S, MOROZOVSKA A N, et al. Intermittency, quasiperiodicity and chaos in probe-induced ferroelectric domain switching[J]. Nature Physics, 2014, 10: 59-66. [72] GAINUTDINOV R V, VOLK T R, ZHANG H H. Domain formation and polarization reversal under atomic force microscopy-tip voltages in ion-sliced LiNbO3 films on SiO2/LiNbO3 substrates[J]. Applied Physics Letters, 2015, 107(16): 162903. [73] IEVLEV A V, ALIKIN D O, MOROZOVSKA A N, et al. Symmetry breaking and electrical frustration during tip-induced polarization switching in the nonpolar cut of lithium niobate single crystals[J]. ACS Nano, 2015, 9(1): 769-777. [74] JIAO Y J, SHAO Z, LI S B, et al. Improvement on thermal stability of nano-domains in lithium niobate thin films[J]. Crystals, 2020, 10(2): 74. [75] SLAUTIN B N, ZHU H, SHUR V Y. Submicron periodical poling in Z-cut lithium niobate thin films[J]. Ferroelectrics, 2021, 576(1): 119-128. [76] QIAN Y Z, ZHANG Z Q, LIU Y Z, et al. Graphical direct writing of macroscale domain structures with nanoscale spatial resolution in nonpolar-cut lithium niobate on insulators[J]. Physical Review Applied, 2022, 17(5): 054049. [77] XU X Y, WANG T X, CHEN P C, et al. Femtosecond laser writing of lithium niobate ferroelectric nanodomains[J]. Nature, 2022, 609: 496-501. [78] 孙 军, 郝永鑫, 张 玲, 等. 铌酸锂晶体及其应用概述[J]. 人工晶体学报, 2020, 49(6): 947-964. SUN J, HAO Y X, ZHANG L, et al. Brief review of lithium niobate crystal and its applications[J]. Journal of Synthetic Crystals, 2020, 49(6): 947-964 (in Chinese). [79] KURODA A, KURIMURA S, UESU Y. Domain inversion in ferroelectric MgO∶LiNbO3 by applying electric fields[J]. Applied Physics Letters, 1996, 69(11): 1565-1567. [80] NERADOVSKAIA E A, NERADOVSKIY M M, ESIN A A, et al. Forward domain growth in 36° Y-cut congruent lithium niobate[J]. Ferroelectrics, 2019, 541(1): 115-122. [81] STANICKI B J, YOUNESI M, LÖCHNER F J F, et al. Surface domain engineering in lithium niobate[J]. OSA Continuum, 2020, 3(2): 345. [82] ZHANG Y C, QIAN Y Z, JIAO Y J, et al. Conductive domain walls in x-cut lithium niobate crystals[J]. Journal of Applied Physics, 2022, 132(4): 044102. [83] ESIN A A, AKHMATKHANOV A R, SHUR V Y. Tilt control of the charged domain walls in lithium niobate[J]. Applied Physics Letters, 2019, 114(9): 092901. [84] BINNIG G, QUATE C F, GERBER C. Atomic force microscope[J]. Physical Review Letters, 1986, 56(9): 930-933. [85] VOLK T, GAINUTDINOV R, ZHANG H H. Domain patterning in ion-sliced LiNbO3 films by atomic force microscopy[J]. Crystals, 2017, 7(5): 137. [86] QIAO X J, GENG W P, ZHENG D W, et al. Domain modulation in LiNbO3 films using litho piezoresponse force microscopy[J]. Nanotechnology, 2021, 32(14): 145713. [87] SLAUTIN B N, TURYGIN A P, GRESHNYAKOV E D, et al. Domain structure formation by local switching in the ion sliced lithium niobate thin films[J]. Applied Physics Letters, 2020, 116(15): 152904. [88] CHAUDHARY P, LU H, LIPATOV A, et al. Low-voltage domain-wall LiNbO3 memristors[J]. Nano Letters, 2020, 20(8): 5873-5878. [89] VOLK T R, GAINUTDINOV R V, ZHANG H H. Domain-wall conduction in AFM-written domain patterns in ion-sliced LiNbO3 films[J]. Applied Physics Letters, 2017, 110(13): 132905. [90] LU H D, TAN Y Z, MCCONVILLE J P V, et al. Electrical tunability of domain wall conductivity in LiNbO3 thin films[J]. Advanced Materials, 2019, 31(48): e1902890. [91] KALININ S V, RODRIGUEZ B J, JESSE S, et al. Vector piezoresponse force microscopy[J]. Microscopy and Microanalysis, 2006, 12(3): 206-220. [92] KÄMPFE T, REICHENBACH P, SCHRÖDER M, et al. Optical three-dimensional profiling of charged domain walls in ferroelectrics by Cherenkov second-harmonic generation[J]. Physical Review B, 2014, 89(3): 035314. [93] XIAO S Y, KÄMPFE T, JIN Y M, et al. Dipole-tunneling model from asymmetric domain-wall conductivity in LiNbO3 single crystals[J]. Physical Review Applied, 2018, 10(3): 034002. [94] SHENG Y, BEST A, BUTT H J, et al. Three-dimensional ferroelectric domain visualization by Cˇerenkov-type second harmonic generation[J]. Optics Express, 2010, 18(16): 16539-16545. [95] WERNER C S, HERR S J, BUSE K, et al. Large and accessible conductivity of charged domain walls in lithium niobate[J]. Scientific Reports, 2017, 7: 9862. [96] POBERAJ G, HU H, SOHLER W, et al. Lithium niobate on insulator (LNOI) for micro-photonic devices[J]. Laser & Photonics Reviews, 2012, 6(4): 488-503. [97] 杨德仁. 半导体材料测试与分析[M]. 北京: 科学出版社, 2010. YANG D R. Testing and analysis of semiconductor materials[M]. Beijing: Science Press, 2010 (in Chinese). [98] OHMORI Y, YAMAGUCHI M, YOSHINO K, et al. Electron hall mobility in reduced LiNbO3[J]. Japanese Journal of Applied Physics, 1976, 15(11): 2263-2264. [99] LIAN J W, CHAI X J, WANG C, et al. Sub 20 nm-node LiNbO3 domain-wall memory[J]. Advanced Materials Technologies, 2021, 6(7): 2001219. [100]SUN J, LI Y M, ZHANG B Y, et al. High-power LiNbO3 domain-wall nanodevices[J]. ACS Applied Materials & Interfaces, 2023, 15(6): 8691-8698. |
[1] | 刘宏德, 王维维, 张中正, 郑大怀, 刘士国, 孔勇发, 许京军. 铌酸锂晶体的缺陷结构[J]. 人工晶体学报, 2024, 53(3): 355-371. |
[2] | 林锦添, 高仁宏, 管江林, 黎春桃, 姚妮, 程亚. 低损耗薄膜铌酸锂光集成器件的研究进展[J]. 人工晶体学报, 2024, 53(3): 372-394. |
[3] | 谢汉荣, 杨铁锋, 韦玉明, 关贺元, 卢惠辉. 薄膜铌酸锂光电探测器近期研究进展[J]. 人工晶体学报, 2024, 53(3): 410-425. |
[4] | 叶志霖, 李世凤, 崔国新, 尹志军, 王学斌, 赵刚, 胡小鹏, 祝世宁. 晶圆级薄膜铌酸锂波导制备工艺与性能表征[J]. 人工晶体学报, 2024, 53(3): 426-433. |
[5] | 孙德辉, 韩文斌, 李陈哲, 彭立果, 刘宏. 8英寸铌酸锂晶体生长研究[J]. 人工晶体学报, 2024, 53(3): 434-440. |
[6] | 何雨轩, 吴江威, 陈玉萍, 陈险峰. 适温离子交换掺铒铌酸锂薄膜的制备研究[J]. 人工晶体学报, 2024, 53(3): 441-448. |
[7] | 刘齐鲁, 郑名扬, 高洋, 张龙喜, 宋于坤, 王孚雷, 刘宏, 王东周, 桑元华. 极化电极均匀化设计调控铌酸锂周期极化占空比[J]. 人工晶体学报, 2024, 53(3): 449-457. |
[8] | 段雨濛, 贾曰辰, 吕金蔓. 飞秒激光直写铌酸锂晶体半包层光波导[J]. 人工晶体学报, 2024, 53(3): 458-464. |
[9] | 陈力, 周旭东, 袁明瑞, 肖恢芙, 田永辉. 基于亚波长光栅辅助定向耦合器的集成铌酸锂偏振分束器[J]. 人工晶体学报, 2024, 53(3): 465-471. |
[10] | 师丽红, 高作轩, 阎文博. 铌酸锂基表面活性剂辅助的水合液滴光伏输运研究[J]. 人工晶体学报, 2024, 53(3): 472-479. |
[11] | 马玉麟, 郭祥, 丁召. GaAsBi半导体材料的制备及应用研究进展[J]. 人工晶体学报, 2024, 53(1): 25-37. |
[12] | 陈沛然, 焦腾, 陈威, 党新明, 刁肇悌, 李政达, 韩宇, 于含, 董鑫. p-Si/n-Ga2O3异质结制备与特性研究[J]. 人工晶体学报, 2024, 53(1): 73-81. |
[13] | 彭倩文, 吉祥. 退火温度对BCZT外延薄膜电学性能的影响及其导电机制分析[J]. 人工晶体学报, 2024, 53(1): 82-89. |
[14] | 肖齐龙, 王世宇, 蒋芮, 梅雄峰, 吴昊, 石亚军, 孙帅, 吴文娟. ZnNb2O6掺杂BNT基无铅弛豫铁电体陶瓷的性能研究[J]. 人工晶体学报, 2024, 53(1): 154-162. |
[15] | 唐海跃, 张文杰, 杨晓明, 苏榕冰, 王祖建, 龙西法, 何超. 铁电单晶三维定向的X射线衍射方法[J]. 人工晶体学报, 2023, 52(9): 1576-1581. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||