[1] ASIF KHAN M, BHATTARAI A, KUZNIA J N, et al. High electron mobility transistor based on a GaN-AlxGa1-xN heterojunction[J]. Applied Physics Letters, 1993, 63(9): 1214-1215. [2] NAZARI M, HANCOCK B L, PINER E L, et al. Self-heating profile in an AlGaN/GaN heterojunction field-effect transistor studied by ultraviolet and visible micro-raman spectroscopy[J]. IEEE Transactions on Electron Devices, 2015, 62(5): 1467-1472. [3] AHMAD I, KASISOMAYAJULA V, SONG D Y, et al. Self-heating in a GaN based heterostructure field effect transistor: ultraviolet and visible Raman measurements and simulations[J]. Journal of Applied Physics, 2006, 100(11): 113718. [4] MISHRA U K, SHEN L K, KAZIOR T E, et al. GaN-based RF power devices and amplifiers[J]. Proceedings of the IEEE, 2008, 96(2): 287-305. [5] IN M F, IN I K. Gallium nitride (GaN): physics, devices, and technology[M]. Boca Raton: CRC Press, 2015. [6] MILLIGAN J W, SHEPPARD S, PRIBBLE W, et al. SiC and GaN wide bandgap device technology overview[C]//2007 IEEE Radar Conference. Waltham, MA, USA. IEEE, 2007: 960-964. [7] HOO T K, ZHANG Y H, CHOWDHURY N, et al. Emerging GaN technologies for power, RF, digital, and quantum computing applications: recent advances and prospects[J]. Journal of Applied Physics, 2021, 130: 160902. [8] MILLÁN J, GODIGNON P, PERPIÑÀ X, et al. A survey of wide bandgap power semiconductor devices[J]. IEEE Transactions on Power Electronics, 2014, 29(5): 2155-2163. [9] MOUNIKA B, AJAYAN J, BHATTACHARYA S, et al. Recent developments in materials, architectures and processing of AlGaN/GaN HEMTs for future RF and power electronic applications: a critical review[J]. Micro and Nanostructures, 2022, 168: 207317. [10] LIU H, ZHENG X, YU Z K. The application analysis of GaN power devices in Radar transmitter[C]//2009 IET International Radar Conference. IET, 2009: 1-5. [11] POMEROY J W, UREN M J, LAMBERT B, et al. Operating channel temperature in GaN HEMTs: dc versus RF accelerated life testing[J]. Microelectronics Reliability, 2015, 55(12): 2505-2510. [12] YATES L, SOOD A, CHENG Z, et al. Characterization of the thermal conductivity of CVD diamond for GaN-on-diamond devices[C]//2016 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS). Austin, TX, USA. IEEE, 2016: 1-4. [13] WON Y, CHO J, AGONAFER D, et al. Fundamental cooling limits for high power density gallium nitride electronics[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2015, 5(6): 737-744. [14] KALOYEROS A E, JOVÉ F A, GOFF J, et al. Review—silicon nitride and silicon nitride-rich thin film technologies: trends in deposition techniques and related applications[J]. ECS Journal of Solid State Science and Technology, 2017, 6(10): P691-P714. [15] ONN D G, WITEK A, QIU Y Z, et al. Some aspects of the thermal conductivity of isotopically enriched diamond single crystals[J]. Physical Review Letters, 1992, 68(18): 2806-2809. [16] WAN K S, PORPORATI A A, FENG G, et al. Biaxial stress dependence of the electrostimulated near-band-gap spectrum of GaN epitaxial film grown on (0001) sapphire substrate[J]. Applied Physics Letters, 2006, 88(25): 251910. [17] ISHIKAWA H, ZHAO G Y, NAKADA N, et al. GaN on Si substrate with AlGaN/AlN intermediate layer[J]. Japanese Journal of Applied Physics, 1999, 38(5A): L492-L494. [18] GU Y M, ZHANG Y, HUA B, et al. Interface engineering enabling next generation GaN-on-diamond power devices[J]. Journal of Electronic Materials, 2021, 50(8): 4239-4249. [19] HANCOCK L B. Characterization of devices and materials for gallium nitride and diamond thermal management applications[EB/OL]. 2016. https://digital.library.txst.edu/server/api/core/bitstreams/b4 d29e81-1 d65-45c2-8873-7 d93afb91 d70/content. [20] CHEN P H, LIN C L, LIU Y K, et al. Diamond heat spreader layer for high-power thin-GaN light-emitting diodes[J]. IEEE Photonics Technology Letters, 2008, 20(10): 845-847. [21] CHAO P C, CHU K, CREAMER C, et al. Low-temperature bonded GaN-on-diamond HEMTs with 11 W/mm output power at 10 GHz[J]. IEEE Transactions on Electron Devices, 2015, 62(11): 3658-3664. [22] KOBAYASHI A, TOMIYAMA H, OHNO Y, et al. Room-temperature bonding of GaN and diamond via a SiC layer[J]. Functional Diamond, 2022, 2(1): 142-150. [23] ZHOU S, WAN S, ZOU B, et al. Interlayer investigations of GaN heterostructures integrated into silicon substrates by surface activated bonding[J]. Crystals, 2023, 13(2): 217. [24] LIANG J B, KOBAYASHI A, SHIMIZU Y, et al. Fabrication of GaN/diamond heterointerface and interfacial chemical bonding state for highly efficient device design[J]. Advanced Materials, 2021, 33(43): 2104564. [25] SANG L W. Diamond as the heat spreader for the thermal dissipation of GaN-based electronic devices[J]. Functional Diamond, 2021, 1(1): 174-188. [26] GAO R H, WANG X H, MU F W, et al. Heterogeneous integration of thick GaN and polycrystalline diamond at room temperature through dynamic plasma polishing and surface-activated bonding[J]. Journal of Alloys and Compounds, 2024, 985: 174075. [27] MATSUMAE T, OKITA S, FUKUMOTO S, et al. Simple low-temperature GaN/diamond bonding process with an atomically thin intermediate layer[J]. ACS Applied Nano Materials, 2023, 6(15): 14076-14082. [28] WANG J S, SUGA T. Compensation of the warpage of CVD diamond wafers using intermediate layers for surface activated bonding[C]//2023 International Conference on Electronics Packaging (ICEP). Kumamoto, Japan. IEEE, 2023: 169-170. [29] EJECKAM F, FRANICS D, FAILI F, et al. S2-T1: GaN-on-diamond: a brief history[C]//Lester Eastman Conference on High Performance Devices. IEEE, 2014:1-5. [30] VIA G D, FELBINGER J G, BLEVINS J, et al. Wafer-scale GaN HEMT performance enhancement by diamond substrate integration[J]. Physica Status Solidi (c), 2014, 11(3/4): 871-874. [31] POMEROY J, BERNARDONI M, SARUA A, et al. Achieving the best thermal performance for GaN-on-diamond[C]//2013 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS). Monterey, CA, USA. IEEE, 2013: 1-4. [32] FRANCIS D, KUBALL M. GaN-on-diamond materials and device technology: a review[M]//Thermal Management of Gallium Nitride Electronics. Amsterdam: Elsevier, 2022: 295-331. [33] EJECKAM F, FRANCIS D, FAILI F, et al. GaN-on-diamond wafers: recent developments[C]//2015 China Semiconductor Technology International Conference. Shanghai, China. IEEE, 2015: 1-3. [34] LEE W S, LEE K W, LEE S H, et al. A GaN/Diamond HEMTs with 23 W/mm for next generation high power RF application[C]//2019 IEEE MTT-S International Microwave Symposium (IMS). Boston, MA, USA. IEEE, 2019: 1395-1398. [35] MOELLE C, KLOSE S, SZÜCS F, et al. Measurement and calculation of the thermal expansion coefficient of diamond[J]. Diamond & Related Materials, 1997, 6(5): 839-842. [36] MANDAL S, YUAN C, MASSABUAU F, et al. Thick, adherent diamond films on AlN with low thermal barrier resistance[J]. ACS Applied Materials & Interfaces, 2019, 11(43): 40826-40834. [37] SLACK G A, TANZILLI R A, POHL R O, et al. The intrinsic thermal conductivity of AIN[J]. Journal of Physics and Chemistry of Solids, 1987, 48(7): 641-647. [38] JIANG X, SCHIFFMANN K, KLAGES C P. Nucleation and initial growth phase of diamond thin films on (100) silicon[J]. Physical Review B, 1994, 50(12): 8402-8410. [39] MU F W, XU B, WANG X H, et al. A novel strategy for GaN-on-diamond device with a high thermal boundary conductance[EB/OL]. 2021: arXiv: 2107.10473. http://arxiv.org/abs/2107.10473 [40] MU F W, HE R, SUGA T. Room temperature GaN-diamond bonding for high-power GaN-on-diamond devices[J]. Scripta Materialia, 2018, 150: 148-151. [41] CHO J, FRANCIS D, ALTMAN D H, et al. Phonon conduction in GaN-diamond composite substrates[J]. Journal of Applied Physics, 2017, 121(5): 055105. [42] YATES L, ANDERSON J, GU X, et al. Low thermal boundary resistance interfaces for GaN-on-diamond devices[J]. ACS Applied Materials & Interfaces, 2018, 10(28): 24302-24309. [43] LIU J L, TIAN H M, CHEN L X, et al. Preparation of nano-diamond films on GaN with a Si buffer layer[J]. New Carbon Materials, 2016, 31(5): 518-524. [44] HUANG X, GUO Z X. Thermal effect of epilayer on phonon transport of semiconducting heterostructure interfaces[J]. International Journal of Heat and Mass Transfer, 2021, 178: 121613. [45] LIU D, FRANCIS D, FAILI F, et al. Impact of diamond seeding on the microstructural properties and thermal stability of GaN-on-diamond wafers for high-power electronic devices[J]. Scripta Materialia, 2017, 128: 57-60. [46] HEES J, KRIELE A, WILLIAMS O A. Electrostatic self-assembly of diamond nanoparticles[J]. Chemical Physics Letters, 2011, 509(1/2/3): 12-15. [47] LEE Y C, LIN S J, PRADHAN D, et al. Improvement on the growth of ultrananocrystalline diamond by using pre-nucleation technique[J]. Diamond and Related Materials, 2006, 15(2/3): 353-356. [48] WANG Y M, ZHOU B, MA G L, et al. Effect of bias-enhanced nucleation on the microstructure and thermal boundary resistance of GaN/SiNx/diamond multilayer composites[J]. Materials Characterization, 2023, 201: 112985. [49] SMITH E J W, PIRACHA A H, FIELD D, et al. Mixed-size diamond seeding for low-thermal-barrier growth of CVD diamond onto GaN and AlN[J]. Carbon, 2020, 167: 620-626. [50] SONG C, KIM J, CHO J. The effect of GaN epilayer thickness on the near-junction thermal resistance of GaN-on-diamond devices[J]. International Journal of Heat and Mass Transfer, 2020, 158: 119992. [51] BEECHEM T, GRAHAM S, HOPKINS P, et al. Role of interface disorder on thermal boundary conductance using a virtual crystal approach[J]. Applied Physics Letters, 2007, 90(5): 054104. [52] NOCHETTO H C, JANKOWSKI N R, BAR-COHEN A. The impact of GaN/substrate thermal boundary resistance on a HEMT device[C]//Proceedings of ASME 2011 International Mechanical Engineering Congress and Exposition, November 11-17, 2011, Denver, Colorado, USA. 2012: 241-249. [53] PARK K, BAYRAM C. Thermal resistance optimization of GaN/substrate stacks considering thermal boundary resistance and temperature-dependent thermal conductivity[J]. Applied Physics Letters, 2016, 109(15): 151904. |