欢迎访问《人工晶体学报》官方网站,今天是 分享到:

人工晶体学报 ›› 2024, Vol. 53 ›› Issue (8): 1337-1343.

• 研究论文 • 上一篇    下一篇

微纳级GaN基VCSEL中周期反射结构与电子阻挡层的设置作用分析

祝震宇1, 贾志刚1,2, 董海亮1,2, 许并社1,2,3   

  1. 1.太原理工大学新材料界面科学与工程教育部重点实验室,太原 030024;
    2.山西浙大新材料与化工研究院,太原 030024;
    3.陕西科技大学材料原子·分子科学研究所,西安 710021
  • 收稿日期:2024-03-08 出版日期:2024-08-15 发布日期:2024-08-14
  • 通信作者: 许并社,博士,教授。E-mail:xubs@tyut.edu.cn
  • 作者简介:祝震宇(1998—),男,浙江省人,硕士研究生。E-mail:zhuzhenyu1936@163.com
  • 基金资助:
    国家自然科学基金(21972103,61904120,61604104,51672185);山西浙大新材料与化工研究院研发项目(2021SX-AT001,2021SX-AT002)

Analysis of the Role of Periodic Reflective Structures and Electron Blocking Layer Setup in Micro-Nano GaN-Based VCSEL

ZHU Zhenyu1, JIA Zhigang1,2, DONG Hailiang1,2, XU Bingshe1,2,3   

  1. 1. Key Laboratory of Interface Science and Engineering in Advanced Materials Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China;
    2. Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030024, China;
    3. Institute of Atomic and Molecular Science, Shanxi University of Science and Technology, Xi’an 710021, China
  • Received:2024-03-08 Online:2024-08-15 Published:2024-08-14

摘要: 氮化镓(GaN)基微纳米结构生长技术的成熟为微纳级GaN基垂直腔面发射激光器(VCSEL)的制备提供了新的途径。本文设计了基于GaN基轴向异质结微纳米柱的微纳级VCSEL结构,采用Al0.8Ga0.2N/In0.2Ga0.8N应变补偿结构作为上下分布式布拉格反射镜(DBR),其中Al0.8Ga0.2N层的Al组分远高于传统结构中的电子阻挡层(EBL),能够更好地起到电子阻挡的作用。本文使用商用软件PICS3D构建了电子阻挡层处于不同位置的VCSEL数理模型,并进行数值模拟计算,探索和分析物理机理,解释了不同位置EBL对空穴注入效率的影响。结果表明,采用Al0.8Ga0.2N与In0.2Ga0.8N组成的应变补偿DBR可以更好地提高空穴注入效率,优化器件光电性能。

关键词: Ⅲ族氮化物, 垂直腔面发射激光器, 空穴注入效率, 微纳米结构, 应变补偿DBR, 电子阻挡层

Abstract: The maturation of GaN-based micro-nano structure growth methodologies have forged an innovative frontier in the fabrication of micro-nano GaN-based vertical cavity surface emitting lasers (VCSELs). This study delineates a sophisticated micro-nano VCSEL architecture founded on GaN axial heterostructures in the configuration of nanowires, incorporating Al0.8Ga0.2N/In0.2Ga0.8N strain-compensated structures as top and bottom distributed Bragg reflector (DBR). Notably, the Al composition in the Al0.8Ga0.2N layer far surpasses that in conventional structures, enhancing its effectiveness as an electron barrier, obviating the need for the electron blocking layer (EBL) traditionally employed as an electron-blocking mechanism. Furthermore, the influence of EBL on hole injection is meticulously examined. In pursuit of refining the hole injection efficiency of GaN-based VCSELs, a numerical model featuring EBL at distinct positions is formulated using commercial software PICS3D, followed by numerical simulations and analyses that delve into the intricate physical mechanisms. The results underscore that the integration of a strain-compensated DBR, comprised of Al0.8Ga0.2N and In0.2Ga0.8N, coupled with the elimination of EBL in traditional configurations, markedly enhances hole injection efficiency, thereby optimizing the optoelectronic performance of the device.

Key words: Ⅲ nitride, vertical cavity surface emitting laser, hole injection efficiency, micro-nano structure, strain-compensated DBR, electron blocking layer

中图分类号: