[1] RAHA S, AHMARUZZAMAN M. ZnO nanostructured materials and their potential applications: progress, challenges and perspectives[J]. Nanoscale Advances, 2022, 4(8): 1868-1925. [2] DONI PON V, JOSEPH WILSON K S, HARIPRASAD K, et al. Enhancement of optoelectronic properties of ZnO thin films by Al doping for photodetector applications[J]. Superlattices and Microstructures, 2021, 151: 106790. [3] LIANG F X, GAO Y, XIE C, et al. Recent advances in the fabrication of graphene-ZnO heterojunctions for optoelectronic device applications[J]. Journal of Materials Chemistry C, 2018, 6(15): 3815-3833. [4] 张 海, 邓浩国, 闫 琳, 等. ZnO纳米结构薄膜的构建及气敏传感性能研究[J]. 内蒙古工业大学学报(自然科学版), 2024, 43(2): 97-105. ZHANG H, DENG H G, YAN L, et al. Construction and gas sensing performance of nanostructured ZnO thin films[J]. Journal of Inner Mongolia University of Technology (Natural Science Edition), 2024, 43(2): 97-105 (in Chinese). [5] WANG J, HE Y C, LUO T C, et al. Simulation and experimental verification study on the process parameters of ZnO-MOCVD[J]. Ceramics International, 2021, 47(11): 15471-15482. [6] 牛楠楠, 左 然. AlN的MOCVD生长中表面吸附的量子化学研究[J]. 人工晶体学报, 2019, 48(7): 1268-1274. NIU N N, ZUO R. Quantum chemistry study on surface adsorption in MOCVD growth of AlN[J]. Journal of Synthetic Crystals, 2019, 48(7): 1268-1274 (in Chinese). [7] NISHIMOTO N, YAMAMAE T, KAKU T, et al. Growth of Ga-doped ZnO by MOVPE using diisopropylzinc and tertiary butanol[J]. Journal of Crystal Growth, 2008, 310(23): 5003-5006. [8] TRIBOULET R, PERRIÈRE J. Epitaxial growth of ZnO films[J]. Progress in Crystal Growth and Characterization of Materials, 2003, 47(2/3): 65-138. [9] LI J, LAI Y J, XU Y F, et al. Process parameter analysis and parasitic reaction of ZnO grown through MOCVD[J]. Vacuum, 2018, 157: 76-82. [10] WANG J, LUO T C, HE Y C, et al. A simulation and experimental study of the parasitic reaction and flow field in the growth of metal-oxide films[J]. Ceramics International, 2022, 48(17): 25302-25313. [11] ANDRÉS J, GONZÁLEZ-NAVARRETE P, SAFONT V S. Unraveling reaction mechanisms by means of quantum chemical topology analysis[J]. International Journal of Quantum Chemistry, 2014, 114(19): 1239-1252. [12] NAKAMURA K, MAKINO O, TACHIBANA A, et al. Quantum chemical study of parasitic reaction in III-V nitride semiconductor crystal growth[J]. Journal of Organometallic Chemistry, 2000, 611(1/2): 514-524. [13] TANG L, ZHANG H, YUAN Y M. Theoretical investigation on gas-phase reaction mechanism of Cp2Mg in p-type doping process of Group III nitrides[J]. Computational and Theoretical Chemistry, 2020, 1177: 112763. [14] TANG L, ZUO R, ZHANG H. Quantum chemical study on nanoparticles formation mechanism in AlGaN MOCVD growth[J]. Journal of Crystal Growth, 2019, 525: 125201. [15] SMITH S M, SCHLEGEL H B. Molecular orbital studies of zinc oxide chemical vapor deposition: gas-phase hydrolysis of diethyl zinc, elimination reactions, and formation of dimers and tetramers[J]. Chemistry of Materials, 2003, 15(1): 162-166. [16] KIM Y S. Investigation on reaction pathways for ZnO formation from diethylzinc and water during chemical vapor deposition[J]. Bulletin of the Korean Chemical Society, 2009, 30(7): 1573-1578. [17] LI J, GAN H L, XU Y F, et al. Chemical reaction-transport model of diethylzinc hydrolysis in a vertical MOCVD reactor[J]. Applied Thermal Engineering, 2018, 136: 108-117. [18] LI J, GAN H L, XU Y F, et al. Chemical reaction-transport model of oxidized diethylzinc based on quantum mechanics and computational fluid dynamics approaches[J]. RSC Advances, 2018, 8(2): 1116-1123. [19] SALLET V, THIANDOUME C, ROMMELUERE J F, et al. Some aspects of the MOCVD growth of ZnO on sapphire using tert-butanol[J]. Materials Letters, 2002, 53(1/2): 126-131. [20] VAN DEELEN J, ILLIBERI A, KNIKNIE B, et al. APCVD of ZnO∶Al, insight and control by modeling[J]. Surface and Coatings Technology, 2013, 230: 239-244. [21] ODA S, TOKUNAGA H, KITAJIMA N, et al. Highly oriented ZnO films prepared by MOCVD from diethylzinc and alcohols[J]. Japanese Journal of Applied Physics, 1985, 24(12R): 1607. [22] WU Y Y, WU R, ZHOU X S, et al. Numerical modelling on the effect of temperature on MOCVD growth of ZnO using diethylzinc and tertiarybutanol[J]. Coatings, 2022, 12(12): 1991. [23] THIANDOUME C, SALLET V, TRIBOULET R, et al. Decomposition kinetics of tertiarybutanol and diethylzinc used as precursor sources for the growth of ZnO[J]. Journal of Crystal Growth, 2009, 311(5): 1411-1415. [24] FRISCH M, TRUCKS G, SCHLEGEL H B, et al. Gaussian 16, Revision A.03[M]. Wallingford: Gaussian Inc., 2016. [25] LI M S, REIMERS J R, FORD M J, et al. Accurate prediction of the properties of materials using the CAM-B3LYP density functional[J]. Journal of Computational Chemistry, 2021, 42(21): 1486-1497. [26] GAN H L, WANG C Y, LI J, et al. DFT study on the gas-phase potential energy surface crossing mechanism of ZnO formation from diethylzinc and triplet oxygen during metal-organic chemical vapor deposition[J]. ChemistrySelect, 2018, 3(7): 1961-1966. [27] ZHANG H, ZUO R, ZHONG T T, et al. Quantum chemistry study on gas reaction mechanism in AlN MOVPE growth[J]. The Journal of Physical Chemistry A, 2020, 124(15): 2961-2971. |