欢迎访问《人工晶体学报》官方网站,今天是 分享到:

人工晶体学报 ›› 2025, Vol. 54 ›› Issue (10): 1748-1763.DOI: 10.16553/j.cnki.issn1000-985x.2025.0170

• 研究论文 • 上一篇    下一篇

贝塞尔函数的高精度高斯积分数值计算

王晓梅1(), 张庆礼1,2()   

  1. 1.中国科学院合肥物质科学研究院,合肥 230026
    2.中国科学院合肥物质科学研究院,安徽光学精密机械研究所,安徽省光子器件与材料重点实验室,合肥 230026
  • 收稿日期:2025-08-01 出版日期:2025-10-20 发布日期:2025-11-11
  • 通信作者: 张庆礼,博士,研究员。E-mail:zql@aiofm.ac.cn
  • 作者简介:王晓梅(1980—),女,安徽省人,硕士。E-mail:xmwang@aiofm.ac.cn
    张庆礼,博导,研究员,《量子电子学报》副主编,《人工晶体学报》编委,中国感光学会理事,中国高技术产业发展促进会理事,安徽省光学会理事,2008年获安徽省优秀青年基金,科学院关键技术人才,主要研究领域为人工晶体生长和发光物理;近五年承担研究任务主要有国家重点研发计划等;研究成果主要包括高均匀性高一致性大尺寸激光晶体制备技术、新型激光晶体、新型重闪烁激光晶体、抗辐射激光晶体等,提出了参数化哈密顿参量拟合方法、稀土离子发光强度的全谱拟合方法等。

Gauss Quadrature Calculation of Bessel Functions with High Precision

WANG Xiaomei1(), ZHANG Qingli1,2()   

  1. 1. Hefei Institutes of Physical Science,Chinese Academy of Sciences,Hefei 230026,China
    2. Anhui Provincial Key Laboratory of Photonics Devices and Materials,Anhui Institute of Optics and Fine Mechanics,Hefei Institutes of Physical Science,Chinese Academy of Sciences,Hefei 230026,China
  • Received:2025-08-01 Online:2025-10-20 Published:2025-11-11

摘要: 贝塞尔函数是研究波动、热传导等问题中的重要函数,其高精度计算在工程科学中具有重要地位。本文给出了采用高斯积分来计算贝塞尔函数Jνz)、Yνz)、Iνz)和Kνz)的方法。通过按正弦、余弦函数零点来进行分区数值计算,克服了三角函数振荡对积分精度的影响;通过将[0,∞]积分项变为[0,T]和[T,∞]区间积分,并在[0,T]区间处理三角函数的振荡,实现了对贝塞尔函数的高精度计算。同时,当z的实部很小时,应适当加宽[0,T]积分区间,以使高斯勒让德积分部分占绝大部分,也是提高积分计算精度的重要途径。编程验证了贝塞尔函数的高斯积分,得到的结果与Mathematica高度吻合。该方法不需要讨论级数的收敛和递推问题,对整个复数域和任意阶数的贝塞尔函数都可进行计算,具有通用性和普适性。

关键词: 贝塞尔函数; 高斯积分; 数值计算; 高精度计算

Abstract: Bessel functions are essential for studying wave propagation, heat conduction, and related fields. It is important to compute them with high precision in engineering sciences. A method to calculate Bessel functions Jνz), Yνz), Iνz) and Kνz) using Gaussian quadrature is presented. By partitioning integral interval into subintervals with the zeros of sine and cosine functions and quadrature was applied on subintervals, the effect of trigonometric oscillations on integral precision can be effectively suppressed. The integral over [0, ∞] for Bessel integral representation is decomposed into integral over [0, T] and [T, ∞], where trigonometric function oscillations are explicitly handled within [0, T] through further partitioning integral intervals with trigonometric function zeros, on subintervals Gauss-Legendre quadrates were applied to obtain high precision quadrature computation. Meanwhile, when the real part of z is small in magnitude, the integration interval [0, T] should be appropriately extended to ensure that the Gauss-Legendre quadrature component contributes dominantly to the numerical result, which is very useful to improve calculation precision. Due to exponential decay properties of integrand, the ratio of Gauss-Laguerre on [T, ∞] would be very little, which would be very useful to improve numerical compute precision. The Gaussian quadrature implementation for Bessel functions isprogrammatically validated with Delphi code, yielding results exhibits remarkable agreement with Mathematica's built-in functions. It is unnecessary for this method to consider series convergence and recurrence procedures, and can be used to calculate Bessel functions with arbitrary orders and complex variable on entire complex plane, which has broad versatility and generality.

Key words: Bessel function; Gauss quadrature; numerical calculation; high precision calculation

中图分类号: