[1] Pokharia R S, Khiangte K R, Rathore J S, et al. Metal semiconductor metal photodiodes based on all-epitaxial Ge-on-insulator-on-Si (111) grown by molecular beam epitaxy[C]. Optical Components and Materials XVI. International Society for Optics and Photonics, 2019, 10914: 1091417. [2] Veerappan M, Mukannan A, Salleh F, et al. Fabrication of high quality, thin Ge-on-insulator layers by direct wafer-bonding for nanostructured thermoelectric devices[J]. Semiconductor Science and Technology, 2017, 32(3): 035021. [3] Son B K, Lin Y, Li W, et al. Metal-semiconductor-metal photodetectors on a GeSn-on-insulator platform[C]. Optical Components and Materials XVI. International Society for Optics and Photonics, 2019, 10914: 109141A. [4] Lin G, Liang D, Wang J, et al. Strain evolution in SiGe-on-insulator fabricated by a modified germanium condensation technique with gradually reduced condensation temperature[J]. Materials Science in Semiconductor Processing, 2019, 97: 56-61. [5] Nakaharai S, Tezuka T, Hirashita N, et al. The generation of crystal defects in Ge-on-insulator (GOI) layers in the Ge-condensation process[J]. Semiconductor science and technology, 2006, 22(1): S103. [6] Maeda T, Ikeda K, Nakaharai S, et al. High mobility Ge-on-insulator p-channel MOSFETs using Pt germanide Schottky source/drain[J]. IEEE electron device letters, 2005, 26(2): 102-104. [7] Akatsu T, Deguet C, Sanchez L, et al. 200 mm germanium-on-insulator (GeOI) by Smart Cut/spl trade/technology and recent GeOI pMOSFETs achievements[C]. 2005 IEEE International SOI Conference Proceedings. IEEE, 2005: 137-138. [8] Le Royer C, Clavelier L, Tabone C, et al. 105 nm Gate length pMOSFETs with high-K and metal gate fabricated in a Si process line on 200 mm GeOI wafers[J]. Solid-state electronics, 2008, 52(9): 1285-1290. [9] Hutin L, Le Royer C, Damlencourt J F, et al. GeOI pMOSFETs scaled down to 30-nm gate length with record off-state current[J]. IEEE Electron Device Letters, 2010, 31(3): 234-236. [10] Liu Y, Gopalakrishnan K, Griffin P B, et al. MOSFETs and high-speed photodetectors on Ge-on-insulator substrates fabricated using rapid melt growth[C]. IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004. IEEE, 2004: 1001-1004. [11] Chen L, Dong P, Lipson M. High performance germanium photodetectors integrated on submicron silicon waveguides by low temperature wafer bonding[J]. Optics Express, 2008, 16(15): 11513-11518. [12] Jain J R, Ly-Gagnon D S, Balram K C, et al. Tensile-strained germanium-on-insulator substrate fabrication for silicon-compatible optoelectronics[J]. Optical Materials Express, 2011, 1(6): 1121-1126. [13] Johnson B, Tan Y, Anderson P, et al. The effects of surface capping during annealing on the microstructure of ultrathin SIMOX materials[J]. Journal of the Electrochemical Society, 2001, 148(2): G63. [14] Hatzopoulos N, Skorupa W, Siapkas D I. Double SIMOX structures formed by sequential high energy oxygen implantation into silicon[J]. Journal of the Electrochemical Society, 2000, 147(1):354. [15] Farag A A, Terra F S, Ashery A, et al. Temperature dependence of J-V and C-V characteristics of n-InAs/p-GaAs heterojunctions prepared by flash evaporation technique and liquid phase epitaxy[J]. Indian Journal of Pure & Applied Physics (IJPAP), 2018, 56(3): 203-209. [16] Wutzler R, Rebohle L, Prucnal S, et al. III-V nanocrystal formation in ion-implanted Ge and Si via liquid phase epitaxy during short-time flash lamp annealing[J]. Materials Science in Semiconductor Processing, 2016, 42: 166-169. [17] Ghyselen B, Hartmann J M, Ernst T, et al. Engineering strained silicon on insulator wafers with the Smart CutTM technology[J]. Solid-state electronics, 2004, 48(8): 1285-1296. [18] Bruel M. Silicon on insulator material technology[J]. Electronics letters, 1995, 31(14): 1201-1202. [19] 多新中. 硅中H+,He+离子注入引起的物理效应与SOI高加速度传感器的研制[D].上海:中国科学院上海冶金研究所,2001. [20] Saito S, Sano Y, Yamada T, et al. Strain relaxation process and evolution of crystalline morphologies during the growths of SiGe on Si (110) by solid-source molecular beam epitaxy[J]. Materials Science in Semiconductor Processing, 2020, 113: 105042. |