[1] Felix H, Christina H, Sören S, et al. Laser contact openings for local poly-Si-metal contacts enabling 26.1%-efficient POLO-IBC solar cells[J]. Solar Energy Materials and Solar Cells, 2018, 186: 184-193. [2] Tanaka M, Taguchi M, Matsuyama T, et al. Development of new a-Si/c-Si heterojunction solar cells:ACT-HIT (artificially constructed junction-heterojunction with intrinsic thin layer)[J]. Japanese Journal of Appllied Physics, 1992, 31: 3518-3522. [3] 程雪梅,孟凡英,汪建强,等.p型晶体硅异质结太阳电池光电特性模拟研究[J].太阳能学报,2012,33(9):1474-1479. [4] Zhao L, Zhou C L, Li H L, et al. Design optimization of bifacial HIT solar cells on p-type silicon substrates by simulation[J]. Solar Energy Material and Solar Cells, 2008, 92(6): 673-681. [5] Dao V A, Heo J, Choi H, et al. Simulation and study of the influence of the bufier intrinsic layer, back-surface field, densities of interface defects, resistivity of p-type silicon substrate and transparent conductive oxide on heterojunction with intrinsic thin-layer(HIT) solar cell[J]. Solar Energy Material and Solar Cells, 2010, 84: 777-783. [6] Yoshikawa K, Kawasaki K, Yoshida W, et al. Silicon Heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%[J]. Nature Energy, 2017, 2: 17032. [7] 尹振超.CIGS薄膜太阳电池窗口层的制备和特性研究[D].天津:天津理工大学,2013. [8] Chen L, Chen X L, Liu Y M, et al. Research on ZnO/Si heterojunction solar cells[J]. Journal of Semiconductors, 2017, 38(5): 66-76. [9] Fenske F, Kliefoth K, Elstner L, et al. ZnO/c-Si heterojunction interface tuning by interlayers[J]. MRS Online Proceedings Library Archive, 1996, 426: 135. [10] Varache R, Leendertz C, Gueunier-Farret M E, et al. Investigation of selective junctions using a newly developed tunnel current model for solar cell applications[J]. Solar Energy Materials and Solar Cells, 2015, 141: 14-23. [11] Krichen M, Ben Arab A. Performance of thin silicon solar cells with a quasi-monocrystalline porous silicon layer on the rear side[J]. Applied Physics B, 2019, 125(10): 194. [12] Lin Y R, Tan X, Liu A M. Influence of the asymmetrical defect state distribution at the a-Si∶H/c-Si interface on the performance of homo-heterojunction solar cells[J]. Surface Science, 2019, 682: 51-59. [13] Yu M, Li Y Q, Cheng Q J, et al. Numerical simulation of graphene/GaAs heterojunction solar cells[J]. Solar Energy, 2019, 182: 453-461. [14] 林家辉,彭启才.n-ZnO/i-ZnO/p-nc-Si结构薄膜太阳能电池的模拟研究[J].电子元件与材料,2012,31(5):27-30. [15] Joshua A O, Mohammed Y O, Jessica A U, et al. Investigating the effect of ZnSe (ETM) and Cu2O (HTM) on absorber layer on the performance of pervoskite solar cell using SCAPS-1D[J]. American Journal of Physics and Applications, 2020, 8(1): 8-18. [16] 赵 雷,周春兰,李海玲,等.a-Si(n)/c-Si(p)异质结太阳电池薄膜硅背场的模拟优化[J].物理学报,2008,57(5):3212-3218. [17] Cheng X M, Meng F Y, Wang J Q, et al. Simulation of heterojunction solar cells based on p-type silicon wafer[J]. Acta Energiae Sokaris Sinica, 2012, 33(9): 1474-1479. |